matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Funktionale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Lineare Funktionale
Lineare Funktionale < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Funktionale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:46 Do 31.03.2005
Autor: MrElgusive

Hallo nochmal!

Mein zweites und letztes Problem für heute, dass mir Kopfschmerzen bereitet:

Sei [mm] $V=P_{n}(\IR)$ [/mm] und $0 [mm] \le [/mm] i [mm] \le [/mm] n$ sei

[mm] $d_{i}:V \to \IR, [/mm] p [mm] \mapsto p^{(i)}(0)$ [/mm]

das lineare Funktional, welches für eine Polynomfunktion p die i-te Ableitung [mm] $p^{(i)}$ [/mm] von p an der Stelle 0 auswertet.

Zeigen Sie, dass [mm] $(d_{i})_{0 \le i \le n}$ [/mm] eine Basis vom Dualraum [mm] $V^{*}$ [/mm] bildet.

Soweit ich das verstanden habe, wird irgendein Polynom auf die i-te Ableitung an der Stelle 0 abgebildet. Das heißt, dass nur die Konstanten übrig bleiben, weil alle Terme mit an der Stelle 0 verschwinden. Und wie soll das nun eine Basis vom Dualraum [mm] $V^{*}$ [/mm] bilden? Es wird wohl stimmen aber wie beweist man es?

Danke für eure Hilfe.

Grüße,
  Christian.

        
Bezug
Lineare Funktionale: Verweis
Status: (Antwort) fertig Status 
Datum: 12:22 Do 31.03.2005
Autor: taura

Hi Christian!

Schau mal hier nach, da wird genau diese Aufgabe diskutiert. Wenn dir die Erklärungen nicht reichen, frag einfach nochmal nach.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]