matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenLineare Codes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Lineare Codes
Lineare Codes < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Codes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Mo 21.01.2008
Autor: mattemonster

Aufgabe
Sei G [mm] \in [/mm] M(4x7, [mm] \IF_{2}) [/mm] die folgende Matrix

G:= [mm] \pmat{ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 } [/mm]

Finden Sie H [mm] \in [/mm] M(3x7, [mm] \IF_{2}), [/mm] so dass die folgenden Bedinnungen erfüllt sind.
(a) [mm] im(G^{t}) [/mm] = ker(H), und damit insbesondere auch H * [mm] G^{t} [/mm] = 0.
(b) H: [mm] \IF_{2}^{7} \to \IF_{2}^{3} [/mm] ist surjektiv.

Kann mir da jemand helfen??? [mm] G^{t} [/mm] st die transponierte Matrix. Ich hab schon versucht, eine Basis von [mm] im(G^{t}) [/mm] auszurechen. die st ja dann gleich, wie die basis von ker(H). Aber wie komm ich dann damit auf H ???

        
Bezug
Lineare Codes: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Di 22.01.2008
Autor: angela.h.b.


> Sei G [mm]\in[/mm] M(4x7, [mm]\IF_{2})[/mm] die folgende Matrix
>
> G:= [mm]\pmat{ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 }[/mm]
>  
> Finden Sie H [mm]\in[/mm] M(3x7, [mm]\IF_{2}),[/mm] so dass die folgenden
> Bedinnungen erfüllt sind.
>  (a) [mm]im(G^{t})[/mm] = ker(H), und damit insbesondere auch H *
> [mm]G^{t}[/mm] = 0.
>  (b) H: [mm]\IF_{2}^{7} \to \IF_{2}^{3}[/mm] ist surjektiv.
>  Kann mir da jemand helfen??? [mm]G^{t}[/mm] st die transponierte
> Matrix. Ich hab schon versucht, eine Basis von [mm]im(G^{t})[/mm]
> auszurechen. die st ja dann gleich, wie die basis von
> ker(H). Aber wie komm ich dann damit auf H ???

Hallo,

was ist denn eine Basis v. [mm] G^{t}? [/mm] Hast Du die bereits berechnet?

Was tut H mit dieser Basis v. Bild [mm] G^{t} [/mm] ?

Ergänze nun die Basis von Kern H zu einer Basis  des [mm] \IF_2^7. [/mm]
Nun überlege, Dir, was H mit den ergänzten Vektoren tun mußt, damit die Abbildung surjektiv wird.

Wenn Du das hast, steht Deine Abbildung.

Um die darstellende Matrix bzgl der Standardbasen aufzustellen, berechene, worauf H diese abbildet, und steck die Ergebnisse als  Spalten in eine Matrix.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]