matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLineare Abhängigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Abhängigkeit
Lineare Abhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit: linear abhängig o. unabhängig
Status: (Frage) beantwortet Status 
Datum: 12:34 Fr 02.11.2012
Autor: Thomas000

Aufgabe
Sind die Elemente [mm] v_1 [/mm] ,..., [mm] v_n [/mm] des Vektorraums V linear abhängig oder linear unabhängig? Begründen Sie Ihre Antwort!

c) V= [mm] \IR^3 v_1 [/mm] = (1,-2,2), [mm] v_2 [/mm] = (-2,2,-1), [mm] v_3 [/mm] = (-3,2,0)

Also ich steh grad bisschen auf dem Schlauch...
ich hab jetzt ein gleichungssystem draus gemacht und komme auf folgendes:
*    l + 2m - 3n = 0
**  -2l + 2m + 2n = 0
*** 2l - m = 0 | +m [mm] \Rightarrow [/mm] 2l = m | einsetzen in *

[mm] \Rightarrow [/mm] l + 4l - 3n = 0 [mm] \Rightarrow [/mm] n = [mm] \bruch{5}{3} [/mm] l einsetzen in **

[mm] \Rightarrow [/mm] -2l + 4l + [mm] \bruch{10}{3}l [/mm] = 0

ich hab das Gefühl das ich hier Murks mache. Aber wenn nicht, dann wären die Vektoren ja linear abhängig, odeR?

        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Fr 02.11.2012
Autor: lyx

Hallo,

also die Vektoren sind linear Abhängig. Ich Persönlich würde es aber nicht damit lösen ein Gleichungssystem aufzustellen, sondern die 3 Vektoren in eine Matrix zu schreiben:

A := [mm] \pmat{ 1 & -2 & 2 \\ -2 & 2 & -1 \\ -3 & 2 & 0 } [/mm]

und dann die Determinante der Matrix A bestimmen. (Was im Fall einer 3 x 3 Matrix mit der Regel von Sarrus recht einfach geht).

Denn es gilt:

det(A) = 0 [mm] \gdw [/mm] lineare Abhängigkeit,
det(A) [mm] \not= [/mm] 0 [mm] \gdw [/mm] lineare unabhängigkeit.

gruß


Bezug
                
Bezug
Lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Fr 02.11.2012
Autor: Thomas000

Naja ok, Matrix schön und gut. Nur leider soll es erst einmal durch ein Gleichungssystem geschehen. Wäre schön, wenn du mir an dieser Stelle mit einem Gleichungssystem weiterhelfen könntest.

Bezug
                        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Fr 02.11.2012
Autor: Steffi21

Hallo, scharf hinsehen genügt,

[mm] \vektor{1 \\ -2 \\ 2 }+2\vektor{-2 \\ 2 \\ -1 }-\vektor{-3 \\ 2 \\ 0 }=\vektor{0 \\ 0 \\ 0 } [/mm]

a-2b-3c=0
-2a+2b+2c=0
2a-b=0

Steffi

Bezug
        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Fr 02.11.2012
Autor: Helbig

Hallo Thomas,

> Sind die Elemente [mm]v_1[/mm] ,..., [mm]v_n[/mm] des Vektorraums V linear
> abhängig oder linear unabhängig? Begründen Sie Ihre
> Antwort!
>  
> c) V= [mm]\IR^3 v_1[/mm] = (1,-2,2), [mm]v_2[/mm] = (-2,2,-1), [mm]v_3[/mm] =
> (-3,2,0)
>  Also ich steh grad bisschen auf dem Schlauch...
>  ich hab jetzt ein gleichungssystem draus gemacht und komme
> auf folgendes:
>  *    l + 2m - 3n = 0
>  **  -2l + 2m + 2n = 0
>  *** 2l - m = 0 | +m [mm]\Rightarrow[/mm] 2l = m | einsetzen in *

* ist falsch: Es muß [mm] $\ell [/mm] - 2m - 3n = 0$ heißen.

>  
> [mm]\Rightarrow[/mm] l + 4l - 3n = 0 [mm]\Rightarrow[/mm] n = [mm]\bruch{5}{3}[/mm] l
> einsetzen in **
>  
> [mm]\Rightarrow[/mm] -2l + 4l + [mm]\bruch{10}{3}l[/mm] = 0
>  
> ich hab das Gefühl das ich hier Murks mache. Aber wenn
> nicht, dann wären die Vektoren ja linear abhängig, odeR?

Nein. Die Vektoren sind genau dann linear abhängig, wenn ein [mm] $\ell\ne [/mm] 0$ die Gleichung löst. Dies ist hier aber nicht der Fall. Also sind die Vektoren linear unabhängig. Allerdings müsstest Du noch den Fehler korrigieren und schauen was dann herauskommt.

Gruß,
Wolfgang


Bezug
                
Bezug
Lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Fr 02.11.2012
Autor: Thomas000

Aufgabe
V = [mm] \IR^3 [/mm]
l = (1,1,0), m = (0,1,0), n = (0,1,1) v = (0,1,0)

Ok, danke dafür. Hab aber gleich noch eine Frage:

oben seht ihr eine Aufgabe. Man erkennt ja sofort, dass 4 Vektoren aus [mm] \IR^3 [/mm] immer linear abhängig sein müssen.
Wenn ich aber nen Gleichungssystem draus mache, kommt folgendes raus:

* l = 0
** l + m + n + v = =
*** v = 0

[mm] \Rightarrow [/mm] l = m = n = v = 0 ... das widerspricht doch aber der linearen abhängigkeit? Das versteh ich nicht ganz.

Bezug
                        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Fr 02.11.2012
Autor: fred97


> V = [mm]\IR^3[/mm]
>  l = (1,1,0), m = (0,1,0), n = (0,1,1) v = (0,1,0)
>  Ok, danke dafür. Hab aber gleich noch eine Frage:
>  
> oben seht ihr eine Aufgabe. Man erkennt ja sofort, dass 4
> Vektoren aus [mm]\IR^3[/mm] immer linear abhängig sein müssen.
>  Wenn ich aber nen Gleichungssystem draus mache, kommt
> folgendes raus:
>  
> * l = 0
>  ** l + m + n + v = =
>  *** v = 0
>  
> [mm]\Rightarrow[/mm] l = m = n = v = 0 ...


Nein, das folgt nicht ! sondern m+n=0, also n=-m.

FRED

> das widerspricht doch
> aber der linearen abhängigkeit? Das versteh ich nicht
> ganz.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]