matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungLineare Abhängigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Lineare Abhängigkeit
Lineare Abhängigkeit < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abhängigkeit: Aufgabe, Frage
Status: (Frage) beantwortet Status 
Datum: 15:50 Di 18.01.2005
Autor: Ferenius

Hab mich schon viel mit dieser Aufgabe beschäftigt, komme aber auf kein befriedigendes Ergebnis:
für welche Werte von a sind folgende Vektoren linear abhängig?
[mm] \vec{a}= \vektor{a \\ 1 \\ 2} \vec{b}=\vektor{5 \\ 6 \\ 1} \vec{c}=\vektor{3 \\ 2 \\ 4} [/mm]
ich weiß, dass zum Beispiel Vektor a und c kollienar sind, das reicht aber nicht aus, außerdem gibt es einen Beweis dafür, dass die drei nicht liear unabhängig sind....wenn mir jemand diesen ganzen sachverhalt mal genauer erläutern könnte, wäre mir sehr geholfen
gruß wolf

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Di 18.01.2005
Autor: Paulus

Lieber Ferenius

das ist so wie bei einer Schatzsuche. Gehe 7 Schritte in die, dann noch 2 Schritte in die andere Richtung, dann findest du den Schatz!

Leider hat der Pirat nicht gesagt, dass der Schatz auch noch 3 Meter tief vergraben ist!

Deine Schritte und der Schatz sind linear unbhängig, weil du mit den vorgegebenen Richtungen den Schatz nie erreichen kannst!

Wenn du einige Vektoren gegeben hast, ist das genau gleich: wenn du einen Vektor (welchen, ist egal) nimmst, und du kannst diesen mit Hilfe der anderen Vektoren erreichen, dann sind die Vektoren linear abhängig.

Als Beispiel:

Der Schatz liegt bei [mm] $\vektor{12\\9\\25}$. [/mm]

Die Anweisung lautet: gehe 2 Schritte in Richtung [mm] $\vektor{1\\2\\5}$ [/mm] und 5 Schritte in Richtung [mm] $\vektor{2\\1\\3}$. [/mm] Bist du jetzt beim Schatz?

Ja, denn es [mm] gilt:$2*\vektor{1\\2\\5}+5*\vektor{2\\1\\3}=\vektor{12\\9\\25}$ [/mm]

Genau so hast du die Aufgabe zu lösen. Verstecke den Schatz bei einem Vektor und frage dich: ist es möglich, den Schatz mit den Bewegungsrichtungen zu erreichen, die durch die anderen Vektoren gegeben sind?

Etwas mathematischer:

Gegeben sind die 3 Vektoren [mm] $\vec{a}$, $\vec{b}$ [/mm] und [mm] $\vec{c}$. [/mm]

Lassen sich jetzt Zahlen $s_$ und $t_$ finden, so dass gilt:

[mm] $s*\vec{a}+t*\vec{b}=\vec{c}$ [/mm]

Falls sich solche Zahlen finden lassen, sind die Vektoren linear abhängig, sonst nicht.

Dein Beispiel also:

[mm] $s\vektor{5\\6\\1}+t*\vektor{3\\2\\4}=\vektor{a\\1\\2}$ [/mm]

Das ist bekanntlich ein Gleichungssystem mit 3 Gleichungen, weil jede einzelne Komponente der beteiligten Vektoren die Gleichung erfüllen muss.

Das Gleichungssystem ist somit:

$5s+3t=a$
$6s+2t=1$
$s+4t=2$

Jetzt brauchst du nur das Gleichungssystem nach s und t aufzulösen! Da wird dann immer noch a auftauchen. Wenn a so gewählt wird, dass das überbestimmte Gleichungssystem keine Widersprüche enthält, dann sind die Vektoren für dieses a linear abhängig.

Für jene Werte von a, wo Widersprüche entstehen, lassen sich ja keine s und t finden: die Vektoren sind dann linear unabhängig. :-)

Kannst du also mal die Aufgabe in Angriff nehmen und uns dein Ergebnis mitteilen? Falls du wider Erwarten Schwierigkeiten haben solltest, dann meldest du dich mit den entsprechenden Fragen einfach wieder.

Mit lieben Grüssen

Paul



Bezug
                
Bezug
Lineare Abhängigkeit: Lösung?
Status: (Frage) beantwortet Status 
Datum: 22:11 Di 18.01.2005
Autor: Ferenius

also, auch mit dieser Erklärung(danke!) komm ich auf kein anderes Ergebnis, als das s=0 sein muss, t=0,5 und a damit 1,5...gibts da noch ne andere lösung?

Bezug
                        
Bezug
Lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Mi 19.01.2005
Autor: Paulus

Hallo Ferenius

> also, auch mit dieser Erklärung(danke!) komm ich auf kein
> anderes Ergebnis, als das s=0 sein muss, t=0,5 und a damit
> 1,5...gibts da noch ne andere lösung?
>  

Ja, das ist genau die Lösung!

Es gibt keine andere Lösung! Die beiden Vektoren ohne a drin sind ja linear unabhängig. Sie können also als Basis der von ihnen aufgespannten Ebene betrachtet werden. Und du weisst ja: die Koordinaten eines Vektors bezüglich einer bestimmten Basis sind eindeutig. Hier wären die Koordinaten also (0,1/2) bezüglich dieser Basis.

Oder etwas anders betrachtet: wenn du eine Ebene im 3-dimensionalen Raum hast und von einem Punkt der Ebene 2 Koordinaten vorgegeben sind, dann ist die 3. Koordinate eindeutig bestimmt (wenn nicht gerade die Ebene Parallel zu einer Koordinatenachse verläuft). In unserem Fall ist a also eindeutig bestimmt. Die Ebene ist ja gegeben durch 2 Vektoren, und vom 3. Vektor (Punkt der Ebene) sind 2 Koordinaten vorgegeben.

Mit lieben Grüssen

Paul





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]