matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Lineare Abbildungen
Lineare Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildungen: dringende Hilfe
Status: (Frage) beantwortet Status 
Datum: 17:10 Mo 28.05.2007
Autor: Mastamind259

Hallo an alle !
Hab hier 2 Fragestellungen die ich nicht hinkriege, weil ich leider durch Job 3 Vorlesungen verpasst habe...ich hoffe ihr könnt verstehen das ich deswegen keine richtigen ansätze habe..und hoffe das ich eine verständliche hilfe bekomme...

also hier die aufgabenstellungen:
Sei B = (v1m....,vn) eine Basis von V und C =(w1,....,wm) eine Basis von W.
f : V---->W sei durch f(vi) = a1i*w1+....+ami*wm definierte lineare Abbildung. A f,B,C sei die f darstellende m x n - Matrix bezüglich B und C, die aus den Koeffizienten aij besteht.
Wie sieht A für den Fall V = W = [mm] R^n [/mm] aus, wenn f den i-ten Basisvektor vi von B auf den j-ten Basisvektor wj von C abbildet wobei i+j=n gilt? (i = 1,2,..n)

Nr. 2
Suchen SIe eine lineare Abbildung f: R² ---> R² für die gilt Kern(f) = Bild(f)
Finden sie eine solche auch für g: [mm] R^3 --->R^3 [/mm] ?

Ich danke schonmal im Vorraus, und werde versuchen meine Termine nicht in die Zeit der Mathe Vorlesungen zu legen ;)

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt
Artur

        
Bezug
Lineare Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:12 Mo 28.05.2007
Autor: Mastamind259

Sorry, hab den flaschen Satz hinzugefügt, sollte heißen das ich diese Frage nirgendwo anders gepostet habe

Bezug
        
Bezug
Lineare Abbildungen: knappe Antwort
Status: (Antwort) fertig Status 
Datum: 08:08 Di 29.05.2007
Autor: statler

Guten Morgen!

>  Hab hier 2 Fragestellungen die ich nicht hinkriege, weil
> ich leider durch Job 3 Vorlesungen verpasst habe...ich
> hoffe ihr könnt verstehen das ich deswegen keine richtigen
> ansätze habe..und hoffe das ich eine verständliche hilfe
> bekomme...
>  
> also hier die aufgabenstellungen:
>  Sei B = (v1m....,vn) eine Basis von V und C =(w1,....,wm)
> eine Basis von W.
>  f : V---->W sei durch f(vi) = a1i*w1+....+ami*wm
> definierte lineare Abbildung. A f,B,C sei die f
> darstellende m x n - Matrix bezüglich B und C, die aus den
> Koeffizienten aij besteht.
>  Wie sieht A für den Fall V = W = [mm]R^n[/mm] aus, wenn f den i-ten
> Basisvektor vi von B auf den j-ten Basisvektor wj von C
> abbildet wobei i+j=n gilt? (i = 1,2,..n)

Die Aufgabenstellung ist streng genommen nicht vollständig, da die Angabe des Bildes des n-ten Basisvektors fehlt. Sonst als Hinweis: Die Spalten der darstellenden Matrix sind die Bilder der Basisvektoren.

> Nr. 2
>  Suchen SIe eine lineare Abbildung f: R² ---> R² für die

> gilt Kern(f) = Bild(f)

z. B. f((x,y)) = (0,x)

>  Finden sie eine solche auch für g: [mm]R^3 --->R^3[/mm] ?

Nein, findest du nicht, weil es sie nicht gibt. Das folgt direkt aus dem Dimensionssatz dim(Bild) + dim(Kern) = 3.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Lineare Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Di 29.05.2007
Autor: Mastamind259

danke für die Antwort...hab es das mit R² im nachhinein selbst hin bekommen...aber die andere Aufgabe leider nicht...es war ne Aufgabe in einem Übungszettel..ich würde mich aber trotzdem freuen wenn mir jmd. zeigen könnte wie es geht..damit ich es verstehe..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]