matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLineare Abbildung bilden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Lineare Abbildung bilden
Lineare Abbildung bilden < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Do 14.12.2006
Autor: Fylosofus

Aufgabe
Gegeben sei der affine Unterraum

[mm]A = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 2 \end{pmatrix} + Lin \begin{Bmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}, & \begin{pmatrix} 4 \\ -2 \\ 3 \\ 1 \end{pmatrix}, & \begin{pmatrix} 0 \\ 6 \\ 3 \\ 3 \end{pmatrix}, & \begin{pmatrix} 2 \\ -6 \\ 2 \\ 4 \end{pmatrix} \end{Bmatrix} \subset \IR^4 [/mm]

Bestimmen Sie für ein geeignetes [mm]q \in \IN[/mm] eine lineare Abbildung [mm]b: \IR^4 \rightarrow \IR^q [/mm] und ein [mm]c \in \IR^q[/mm] mit [mm]A = b^{-1} \{c\}[/mm].

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich sitze nun seit heute früh an dieser Aufgabe und jegliches Durchwälzen des Skripts oder Büchern bringt mich irgendwie nicht weiter.

Ich wollte zunächst mal sicher gehen, ob ich die Aufgabe überhaupt richtig verstanden habe. Und weil ich sonst niemanden wüsste, den ich fragen könnte (meine Mitstudenten wissen auch nicht weiter), tue ich das mal hier.

b soll irgendeine lineare Abbildung sein, die die Vorraussetzung erfüllt, dass es ein c gibt, dessen Faser genau A ist. Das heißt, alle Elemente aus A, werden von b auf c abgebildet. Und auch nur diese Elemente, denn würden auch noch andere Elemente außer die von A auf c abgebildet werden, kämen diese ja auch in der Faser vor.

Zudem weiß ich, dass die Matrix zu b genau 4 Spalten haben soll. Damit weiß ich schonmal (nach der Rangformel), dass die Dimension des Kerns von b + die Dimension des Bildes von B, also q, = 4 ist. Damit ist q auf jeden Fall mal <= 4. Sehe ich das richtig ?

Viel weiter weiß ich im Moment leider auch nicht :( Ich habe noch diverse Gleichungen aufgestellt, indem ich vor jeden Vektor aus der Linearen Hülle eine variable gestellt habe usw, aber das hat mir leider auch nicht weitergeholfen.

Wäre nett, wenn mir jemand ein paar Hinweise geben könnte!

viele Grüße,

Leon

        
Bezug
Lineare Abbildung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Do 14.12.2006
Autor: angela.h.b.


> Gegeben sei der affine Unterraum
>  
> [mm]A = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 2 \end{pmatrix} + Lin \begin{Bmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}, & \begin{pmatrix} 4 \\ -2 \\ 3 \\ 1 \end{pmatrix}, & \begin{pmatrix} 0 \\ 6 \\ 3 \\ 3 \end{pmatrix}, & \begin{pmatrix} 2 \\ -6 \\ 2 \\ 4 \end{pmatrix} \end{Bmatrix} \subset \IR^4[/mm]
>  
> Bestimmen Sie für ein geeignetes [mm]q \in \IN[/mm] eine lineare
> Abbildung [mm]b: \IR^4 \rightarrow \IR^q[/mm] und ein [mm]c \in \IR^q[/mm]
> mit [mm]A = b^{-1} \{c\}[/mm].
>  Ich habe diese Frage in keinem Forum
> auf anderen Internetseiten gestellt.

> b soll irgendeine lineare Abbildung sein, die die
> Vorraussetzung erfüllt, dass es ein c gibt, dessen Faser
> genau A ist. Das heißt, alle Elemente aus A, werden von b
> auf c abgebildet. Und auch nur diese Elemente, denn würden
> auch noch andere Elemente außer die von A auf c abgebildet
> werden, kämen diese ja auch in der Faser vor.

Hallo,

das ist richtig.

Du weißt sicher, daß lineare Abbildungen von einem VR in einen anderen durch Angabe der Werte auf einer Basis eindeutig bestimmt sind.

Ich mache mich jetzt auf die Suche nach einer möglichst geschickten Basis.

Es ist A= [mm] a+ [/mm]  mit [mm] a:=\vektor{1 \\ 1 \\ -1 \\ 2 }, v_1:=\vektor{1 \\ -1 \\ 1 \\ 1}, v_2:= \vektor{4 \\ -2 \\ 3 \\ 1 }, v_3:=\vektor{0 \\ 6 \\ 3 \\ 3 } [/mm] und [mm] v_4:= \vektor{2 \\ -6 \\ 2 \\ 4 } [/mm]

Wenn Du Dir [mm] v_1,...,v_4 [/mm] genauer anschaust (mit Stift und Papier), wirst Du feststellen, daß sie nicht linear unabhängig sind. Auf den Vektor [mm] v_4 [/mm] kann man verzichten, die verbleibenden drei sind linear unabhängig.

Also ist A= [mm] a+. [/mm]

Weiter kannst Du feststellen, daß [mm] (a,v_1,v_2,v_3) [/mm] linear unabhängig sind.
4 linear unabhängige Vektoren aus [mm] \IR^4 [/mm] - eine Basis des [mm] \IR^4! [/mm]

Jedes x [mm] \in [/mm] A läßt sich schreiben als [mm] x=a+k_1v_1+k_2v_2+k_3v_3 [/mm] mit [mm] k_i \in \IR. [/mm]

Schauen wir uns nun b(x) an:

[mm] b(x)=b(a+k_1v_1+k_2v_2+k_3v_3)=b(a)+k_1b(v_1)+k_2b(v_2)+k_3b(v_3) [/mm]

Siehst Du, daß, wenn wir so geschickt sind, daß wir sagen [mm] b(v_i):=0, [/mm] jedes Element von A auf b(a) abgebildet wird?
Weisen wir nun dem Basisvektor a auch noch einen Wert zu , etwa b(a):=a   (aber das ist nicht zwingend), so haben wir eine Abbildung gefunden, die die geforderte Bedingung erfüllt.

Wie gesagt, die gefundene Möglichkeit ist eine Möglichkeit von vielen.

Man könnte auch in den [mm] \IR^2 [/mm] abbilden, z.B. vermöge [mm] b(v_i):=\vektor{0\\ 0}, b(a):=\vektor{1 \\ 0}. [/mm]


Noch eine Sache: wie sollst Du das aufschreiben auf Deinem Aufgabenblatt?
Mach es so:
Sag: ich definiere eine lineare Abb. b: [mm] \IR^4 [/mm] --> [mm] \IR^{jenachdem} [/mm] durch b(a):=..., [mm] b(v_1):=...,... [/mm]

Dann erklärst Du, daß a, [mm] v_1,..., v_3 [/mm]  eien Basis des [mm] \IR^4 [/mm] ist, und somit b eindeutig bestimmt.

Und nun zeigst Du, daß b genau die geforderte Eigenschaft hat.

Gruß v. Angela
                                                                                                                      
        



Bezug
                
Bezug
Lineare Abbildung bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Do 14.12.2006
Autor: Fylosofus

Hallo,

vielen Dank für die ausführliche und prompte Erklärung! Ich habe sie jetzt zwar im Detail noch nicht komplett verstanden, aber ich denke das wird noch.
Ich hoffe, eines Tages selbst auf solche Ansätze zu kommen ...

viele Grüße,


Leon

Bezug
                        
Bezug
Lineare Abbildung bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:51 Fr 15.12.2006
Autor: angela.h.b.

Hallo,

zunächst ein etwas verspätetes

[willkommenmr].

> vielen Dank für die ausführliche und prompte Erklärung! Ich
> habe sie jetzt zwar im Detail noch nicht komplett
> verstanden, aber ich denke das wird noch.

Frag ruhig nach, was Du nach eigenem Überlegen nicht verstehst!
Manche Threads sind durchaus etwas länger. Das darf so sein...

>  Ich hoffe, eines Tages selbst auf solche Ansätze zu kommen

Steter Tropfen...

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]