matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLineare Abb. in IR[X]
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Lineare Abb. in IR[X]
Lineare Abb. in IR[X] < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abb. in IR[X]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Do 03.11.2011
Autor: qed

Aufgabe
Sei P der Vektorraum der reellen Polynome vom maximalen Grad 2 und sei [mm]f:P\rightarrow P[/mm] definiert durch [mm] f(p) = (\alpha_{2}+3 \alpha_{1})X+(\alpha_{1}+\alpha_{0})[/mm] [mm](\forall p \in P)[/mm].
Beschreiben Sie das Bild(f) und den Kern(f).

Hallo alle zusammen,

habe leider Probleme Aufgaben dieser Art zu lösen.
In der Vorlesung hatten wir z.B. Abbildungen der Form [mm]f:\IR^n \rightarrow \IR^m[/mm], [mm]f_{A}(x)=Ax[/mm] für [mm]A \in M_{mn}(\IR)[/mm]. Da ist mir das Vorgehen klar (Beschreibung von Bild und Kern über deren Basen). Jetzt kann ich aber leider diese Vorgehensweise nicht auf Polynome anwenden, weil ich noch nicht einmal in der Lage bin, ein Erzeugendensystem mithilfe der Standartbasis von P [mm](1,X,X^{2})[/mm] anzugeben.

Könnte mir vieleicht jemand einen Tip geben?

Viele Grüße und vorab vielen Dank,

qed

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Abb. in IR[X]: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Do 03.11.2011
Autor: fred97


> Sei P der Vektorraum der reellen Polynome vom maximalen
> Grad 2 und sei [mm]f:P\rightarrow P[/mm] definiert durch [mm]f(p) = (\alpha_{2}+3 \alpha_{1})X+(\alpha_{1}+\alpha_{0})[/mm]
> [mm](\forall p \in P)[/mm].
>  Beschreiben Sie das Bild(f) und den
> Kern(f).
>  Hallo alle zusammen,
>  
> habe leider Probleme Aufgaben dieser Art zu lösen.
> In der Vorlesung hatten wir z.B. Abbildungen der Form
> [mm]f:\IR^n \rightarrow \IR^m[/mm], [mm]f_{A}(x)=Ax[/mm] für [mm]A \in M_{mn}(\IR)[/mm].
> Da ist mir das Vorgehen klar (Beschreibung von Bild und
> Kern über deren Basen). Jetzt kann ich aber leider diese
> Vorgehensweise nicht auf Polynome anwenden, weil ich noch
> nicht einmal in der Lage bin, ein Erzeugendensystem
> mithilfe der Standartbasis von P [mm](1,X,X^{2})[/mm] anzugeben.


Das verstehe ich nicht so ganz. Eine Basis von P ist [mm] \{1,X,X^2\}. [/mm] Diese ist natürlich auch ein Erzeugendensystem von P.

Zum Kern von f: Sei [mm] p(X)=a_0+a_1X+a_2X^2 [/mm]  (ich schreibe lieber a als [mm] \alpha) [/mm]

p [mm] \in [/mm] Kern(f)  [mm] \gdw [/mm] f(p)=0 [mm] \gdw a_2+3a_1=0 [/mm] und [mm] a_1+a_0=0. [/mm]

Nun schau Dir diese LGS mal an. Dann wirst Du sehen:

    p [mm] \in [/mm] Kern(f)  [mm] \gdw [/mm]  es gibt ein a [mm] \in \IR [/mm] mit:  [mm] p(X)=a(1-X+3X^2). [/mm]

Zum Bild von f:

Man sieht sofort: Bild(f) [mm] \subseteq \{p \in P: grad(p)~ \le 1\} [/mm]

Zeige:   Bild(f)= [mm] \{p \in P: grad(p)~ \le 1\} [/mm]

FRED

>  
> Könnte mir vieleicht jemand einen Tip geben?
>  
> Viele Grüße und vorab vielen Dank,
>  
> qed
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Lineare Abb. in IR[X]: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Do 03.11.2011
Autor: qed

Hallo Fred,

vielen Dank für Deine Hilfe! Habs endlich verstanden.

Zu Bild(f):
Durch Einsetzen der Standartbasis [mm](1,X,X^2)[/mm] in [mm]f[/mm] erhalten wir ein Erzeugendensystem von [mm]Bild(f)[/mm] : [mm]<1,X,2X+1>[/mm]. Es folgt, dass [mm](1,X)[/mm] eine Basis von Bild(f) ist.

Nochmal danke.

Viele Grüße

qed

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]