matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLinear abhängige Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Linear abhängige Menge
Linear abhängige Menge < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linear abhängige Menge: Frage
Status: (Frage) beantwortet Status 
Datum: 17:58 Di 23.11.2004
Autor: Wonko_der_Weise

Hallo mal wieder,

ich sitze erneut an einer Aufgabe, zu der mir nix mehr einfällt. Da ihr mir letztes Mal super geholfen habt, versuche ich mein Glück erneut:

Im Vektorraum $V$ über [mm] $\IR$ [/mm] sei [mm] $M=\{u_1, u_2, ..., u_n\}$ [/mm] eine Menge von linear unabhängigen Vektoren und [mm] $u=\sum_{i=1}^n(\alpha_iu_i) [/mm] $ mit [mm] $\alpha_i\in\IR$. [/mm]

So viel zu den Voraussetzungen. Ich soll zeigen, dass eine Menge [mm] $N=\{u_1-u, u_2-u, ..., u_n-u\}$ [/mm] genau dann linear abhängig ist, wenn [mm] $\sum_{i=1}^n\alpha_i [/mm] = 1$

ist.

Kann mir bitte jemand beim Herangehen an die Aufgabe unter die Arme greifen? Ich sehe hier nicht einmal einen Ansatz :(

Mfg, Adrian

        
Bezug
Linear abhängige Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Mi 24.11.2004
Autor: Clemens

Hallo Adrian!

Zuerst die Rückrichtung: "<=="
Sei [mm] \summe_{i=1}^{n} \alpha_{i}=1. [/mm] Dann ist mindestens ein [mm] \alpha_{j} [/mm] mit j [mm] \in [/mm] {1,...,n} ungleich 0 und damit ist
[mm] \alpha_{1}(u_{1} [/mm] - u) + ... +  [mm] \alpha_{n}(u_{n} [/mm] - u)
eine nichttriviale Linearkombination, für die gilt:
= ( [mm] \alpha_{1}u_{1} [/mm] + ... +  [mm] \alpha_{n}u_{n}) [/mm] - ( [mm] \alpha_{1} [/mm] + ... + [mm] \alpha_{n})*u [/mm]
= u - 1*u = 0

Jetzt die Hinrichtung: "==>"
Seien [mm] \beta_{1},..., \beta_{n} [/mm] nichttriviale Koeffizienten mit:
[mm] \beta_{1}(u_{1} [/mm] - u) + ... +  [mm] \beta_{n}(u_{n} [/mm] - u) = 0
Mit u = [mm] \alpha_{1}u_{1} [/mm] + ... + [mm] \alpha_{n}u_{n} [/mm] und s:= [mm] \beta_{1} [/mm] + ... + [mm] \beta_{n} [/mm] erhalten wir
==> ( [mm] \beta_{1} [/mm] - [mm] \alpha_{1}*s)u_{1} [/mm] + ... + ( [mm] \beta_{n} [/mm] - [mm] \alpha_{n}*s)u_{n} [/mm] = 0
Die Koeffizienten vor den [mm] u_{i} [/mm] müssen alle 0 sein ("linear unabhängig"). Daher können wir sie alle zusammenaddieren und erhalten immer noch 0:
==> ( [mm] \beta_{1} [/mm] - [mm] \alpha_{1}*s) [/mm] + ... + ( [mm] \beta_{n} [/mm] - [mm] \alpha_{n}*s) [/mm] = 0
Nach Umsortieren:
==> ( [mm] \beta_{1} [/mm] + ... + [mm] \beta_{n}) [/mm] - ( [mm] \alpha_{1} [/mm] + ... + [mm] \alpha_{n})*s [/mm] = 0
==> s - [mm] (\alpha_{1} [/mm] + ... + [mm] \alpha_{n})s [/mm] = 0
Wenn s = 0 währe, dann folgt daraus (die letzte Formel, in denen die [mm] u_{i} [/mm] vorkommen), dass alle [mm] \beta_{i} [/mm] = 0, was unserer Annahme widerspricht. Also ist s [mm] \not= [/mm] 0 und daher:
[mm] (\alpha_{1} [/mm] + ... + [mm] \alpha_{n}) [/mm] = 1.

Gruß
Clemens

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]