matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenLin. Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Lin. Unabhängigkeit
Lin. Unabhängigkeit < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Mi 26.03.2014
Autor: geigenzaehler

gegeben seien 3 Vektoren v1...v3 aus [mm] IR^4. [/mm] </task>
Ich habe diese Aufgabe mit konkreten Vektoren, frage der EInfachheit halber aber allgemein, ob ich

SO ARGUMENTIEREN KANN: (?)

Diese Vektoren führen auf ein LGS mit Koeff.matrix der Form 4x3.

Die Rangbestimmung dieser Matrix ergibt Rg=3

Was mich hier durcheinanderbringen könnte:
Wir haben zwar Elemente aus [mm] IR^4, [/mm] aber mit 3 (lin. unabh.) Vektoren kann ich (maximal) den [mm] IR^3 [/mm] aufspannen (stimmt das?).

D. h. wenn Rg=3 gleich  n=3 bzgl. [mm] IR^n [/mm] (und hier wieder die Frage, ob denn n=3 oder n=4 wichtig ist), dann gibt es genau eine Lsg. des LGS
-> es muss der Nullvektor als Lsg sein, weil dieser immer Lsg ist, wenn es darum geht, Vektoren auf den Nullvektor abzubilden

-> die geg. Vektoren v1...v3 sind lin. unabhängig.

Nachtrag:
Eigentlich muesste mir doch die tatsache, dass die Matrix mti 3 SPALTEN den Zeilenrang 3 hat bereits alles über die lin. unabhängigkeit aussagen, oder?
Gibt es nicht eine Regel wie Zeilenrang=Spaltenrang-> ...?

        
Bezug
Lin. Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Mi 26.03.2014
Autor: Sax

Hi,

> gegeben seien 3 Vektoren v1...v3 aus [mm]IR^4.[/mm]
>  Ich habe diese Aufgabe mit konkreten Vektoren,

unglücklicherweise haben wir die Aufgabe nicht.

Du formulierst weder eine konkrete Aufgabenstellung noch jetzt oder später eine konkrete Fragestellung.
Wundere dich dann nicht, wenn auch die Antworten nur allgemein ausfallen können.

> frage der
> EInfachheit halber aber allgemein, ob ich
>
> SO ARGUMENTIEREN KANN: (?)
>  
> Diese Vektoren führen auf ein LGS mit Koeff.matrix der
> Form 4x3.

Diese Vektoren allein führen zunächst mal nirgendwo hin. Erst die Aufgabenstellung kann auf ein LGS führen.

>  
> Die Rangbestimmung dieser Matrix ergibt Rg=3
>  
> Was mich hier durcheinanderbringen könnte:
>  Wir haben zwar Elemente aus [mm]IR^4,[/mm] aber mit 3 (lin. unabh.)
> Vektoren kann ich (maximal) den [mm]IR^3[/mm] aufspannen (stimmt
> das?).

Nein.
Drei linear unabhängige Vektoren des [mm] \IR^4 [/mm] spannen einen dreidimensionalen Unterraum des [mm] \IR^4 [/mm] auf. Der ist zwar isomorph aber nicht gleich dem [mm] \IR^3. [/mm]

>  
> D. h. wenn Rg=3 gleich  n=3 bzgl. [mm]IR^n[/mm] (und hier wieder die
> Frage, ob denn n=3 oder n=4 wichtig ist), dann gibt es
> genau eine Lsg. des LGS
>  -> es muss der Nullvektor als Lsg sein, weil dieser immer

> Lsg ist, wenn es darum geht, Vektoren auf den Nullvektor
> abzubilden

Jetzt kommen auf einmal auch noch Abbildungen ins Spiel und spätestens jetzt wäre doch die Angabe der Fragestellung angebracht.

>  
> -> die geg. Vektoren v1...v3 sind lin. unabhängig.
>  
> Nachtrag:
>  Eigentlich muesste mir doch die tatsache, dass die Matrix
> mti 3 SPALTEN den Zeilenrang 3 hat bereits alles über die
> lin. unabhängigkeit aussagen, oder?
>  Gibt es nicht eine Regel wie Zeilenrang=Spaltenrang-> ...?

Wenn die mit den Vektoren gebildete Matrix den Rang 3 hat, dann sind die drei Vektoren tatsächlich linear unabhängig.

Gruß Sax.


Bezug
                
Bezug
Lin. Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Mi 26.03.2014
Autor: geigenzaehler

"Diese Vektoren allein führen zunächst mal nirgendwo hin. Erst die Aufgabenstellung kann auf ein LGS führen.

>  
> Die Rangbestimmung dieser Matrix ergibt Rg=3
>  
> Was mich hier durcheinanderbringen könnte:
>  Wir haben zwar Elemente aus $ [mm] IR^4, [/mm] $ aber mit 3 (lin. unabh.)
> Vektoren kann ich (maximal) den $ [mm] IR^3 [/mm] $ aufspannen (stimmt
> das?).

Nein.
Drei linear unabhängige Vektoren des $ [mm] \IR^4 [/mm] $ spannen einen dreidimensionalen Unterraum des $ [mm] \IR^4 [/mm] $ auf. Der ist zwar isomorph aber nicht gleich dem $ [mm] \IR^3. [/mm] "

Also was mir reichen würde:
Wenn diese 3 Vektoren einen 3-dim. Unterraum aufspannen (egal von welchem [mm] IR^n) [/mm] und der Rang der Matrix
(die durch die Suche nach einer Lsg. für die Abbildung auf den Nullvektor entsteht, also: welche Linearkombination der Vektoren ergibt den Nullvektor)
aus diesen Vektoren 3 ist, dann kann man daraus doch folgern, dass die 3 Vektoren lin. unabhängig sind, oder?

Denn (wären diese Aussagen äquivalent?)
"Wenn die mit den Vektoren gebildete Matrix den Rang 3 hat, dann sind die drei Vektoren tatsächlich linear unabhängig."

Bezug
                        
Bezug
Lin. Unabhängigkeit: Definition rang?
Status: (Antwort) fertig Status 
Datum: 17:49 Mi 26.03.2014
Autor: weightgainer

Meines Wissens ist die Definition des Rangs einer Matrix die maximale Anzahl l.u. Spalten/Zeilen.

Wenn ich deine Vermutung/Frage richtig interpretiere, dann müsste das schon die Antwort sein.

Wenn du als Rang der Matrix 3 berechnet hast, dann sind dort 3 l.u. Vektoren drin.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]