matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenLin. Unab. von Vektoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Lin. Unab. von Vektoren
Lin. Unab. von Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. Unab. von Vektoren: Beweisversuch
Status: (Frage) beantwortet Status 
Datum: 15:07 So 04.12.2011
Autor: clemenum

Aufgabe
Man zeige:
[mm] $\{v_1,v_2,v_3\}$ [/mm] l.u. [mm] \Rightarrow $\{v_1,v_2\}, \{v_1,v_3\}, \{v_2,v_3\}, \{v_1\}, \{v_2\}, \{v_3\} [/mm] $ l.u.

Da ich keine unnötoge Fleißaufgabe machen will, versuche ich gleich folgende Verallgemeinerung dessen zu beweisen:
Ich zeige, dass jede nichtleere Teilmenge einer linear unabhängigen Menge $S = [mm] \{v_1,v_2,\ldots, v_r \}$ [/mm] selbst linear unab. ist.  
Und zwar folgendermaßen:

Sei $S= [mm] \{v_1, v_2, \ldots, v_r\} \subseteq \mathbb{R}^n [/mm] $
Seien
            [mm] v_1 [/mm] = [mm] (v_{11}, v_{12},\ldots, v_{1r}) [/mm]
            [mm] v_2 [/mm] = [mm] (v_{21}, v_{12}, \ldots, v_{2r}) [/mm]
             [mm] \vdots [/mm]
            [mm] v_r [/mm] = [mm] (v_{r1}, v_{r_2}, \ldots, v_{r_n}) [/mm]  

Nun gilt nach Voraussetzung:
[mm] v_{11} k_1 [/mm] + [mm] v_{21}{k_2} [/mm] + [mm] \ldots [/mm] + [mm] v_{r_1}k_n [/mm] = 0, [mm] k_i [/mm] = 0 [mm] \forall [/mm] i
[mm] \vdots [/mm]
[mm] v_{1n }k_1 [/mm] + [mm] v_{2n}{k_2}+ \ldots [/mm] + [mm] v_{rn}k_n [/mm] = 0, [mm] k_i [/mm] = 0 [mm] \forall [/mm] i

Nun, wenn alle [mm] $k_i$ [/mm] 0 sind, dann doch erst recht alle vorherigen. Ich kann jedoch nicht ganz sicher begründen, warum es für alle vorigen nur triviale Lösungen geben kann und bitte Euch hier um Hilfe.

        
Bezug
Lin. Unab. von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 08:32 Mo 05.12.2011
Autor: Stoecki

überlege dir folgenden widerspruchsbeweis:

seien [mm] {v_i,..., v_n} [/mm] linear unabhängig. dann gilt [mm] k_1 v_1 [/mm] +...+ [mm] k_n v_n [/mm] = 0 hat nur die lösung [mm] k_i [/mm] = 0 für alle i=1,...,n

was wäre denn jetzt, wenn nur eine teilsumme davon betrachtet werden würde (z.B. i=1,...,n-1)?
kann es dann eine andere lösung als [mm] k_1 [/mm] = ... = [mm] k_{n-1} [/mm] = 0 geben? warum nicht?

wenn das klar ist, hast du für deine aussagen einen beweis



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]