matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLin. DGL höherer Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Lin. DGL höherer Ordnung
Lin. DGL höherer Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. DGL höherer Ordnung: Korrektur + Tipp
Status: (Frage) beantwortet Status 
Datum: 14:16 Do 30.05.2013
Autor: Pia90

Aufgabe 1
Es seien  [mm] \gamma \ge [/mm] 0, [mm] \omega_0, \omega [/mm] > 0, A [mm] \in \IC [/mm] und [mm] a_1, a_2 \in [/mm] IR.

a) Bestimmen Sie die allgemeine (reelle) Lösung von [mm] y''+\gamma y'+\omega_0^2y [/mm] = 0.

Aufgabe 2
b) Bestimmen Sie eine partikuläre (komplexe) Lösung von
[mm] y''+\gamma y'+\omega_0^2y [/mm] = [mm] Ae^{i \omega t}. [/mm]

Aufgabe 3
c) Bestimmen Sie eine partikuläre (reelle) Lösung von
[mm] y''+\gamma y'+\omega_0^2y [/mm] = [mm] a_1 cos(\omega [/mm] t) + [mm] a_2 sin(\omega [/mm] t)

Hallo zusammen,

ich sitze nun seit einigen Tagen an den oben genannten Aufgaben(teilen) und versuche diese zu lösen.
Teil a) und b) habe ich glaube ich soweit hinbekommen, aber vielleicht könnte jemand von euch da mal drüberschauen, ob das auch richtig ist?
Bei Teil c) hänge ich allerdings und kriege das noch nicht hin. Ich wäre euch bei der Aufgabe für Tipps, Hinweise etc also sehr dankbar :)

Also zunächst Teil a):

Charakteristisches Polynom: P(t)= [mm] t^2+\gamma t+\omega_0^2 [/mm]
P(t) = 0 [mm] \gdw (t+\bruch{\gamma}{2})^2 [/mm] = [mm] \bruch{\gamma^2}{4} [/mm] - [mm] \omega_0^2 [/mm]

1. Fall: [mm] \bruch{\gamma^2}{4}=\omega_0^2 [/mm]
t=- [mm] \bruch{\gamma}{2} [/mm] (doppelt)
Also Fundamentalsystem: x [mm] \mapsto e^{- \bruch{\gamma}{2}x}; [/mm] x [mm] \mapsto [/mm] x * [mm] e^{- \bruch{\gamma}{2}x} [/mm]

2. Fall: [mm] \bruch{\gamma^2}{4} [/mm] > [mm] \omega_0^2 [/mm]
t= - [mm] \bruch{\gamma}{2} \pm \wurzel{\bruch{\gamma^2}{4}- \omega_0^2} [/mm]
Fundamentalsystem: x [mm] \mapsto e^{(- \bruch{\gamma}{2}+ \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x}, [/mm] x [mm] \mapsto e^{(- \bruch{\gamma}{2}- \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x} [/mm]

3. Fall: [mm] \bruch{\gamma^2}{4} [/mm] < [mm] \omega_0^2 [/mm]
t= [mm] \bruch{1}{2}(-\gamma \pm [/mm] i [mm] \wurzel{4 \omega_0^2 - \gamma^2}) [/mm]
Fundamentalsystem: x [mm] \mapsto e^{\bruch{1}{2}(-\gamma + i \wurzel{4 \omega_0^2 - \gamma^2})x}, [/mm] x [mm] \mapsto e^{\bruch{1}{2}(-\gamma - i \wurzel{4 \omega_0^2 - \gamma^2})x} [/mm]


Teil b) :
In Fall 1 und 2, sowie in Fall 3 für [mm] \gamma [/mm] >0, ist die partikuläre Lösung
[mm] \psi [/mm] (x) = [mm] \bruch{A}{P(i \omega)}*e^{i \omega x} [/mm] = [mm] \bruch{A}{(i \omega)^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x} [/mm] = [mm] \bruch{A}{- \omega^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x} [/mm]

Für [mm] \gamma=0 [/mm] in Fall 3 sind [mm] \mu [/mm] = [mm] \pm [/mm] i [mm] \omega_0 [/mm] Nullstellen von P, wobei [mm] \mu [/mm] = - i [mm] \omega_0 [/mm] nicht definiert, da dann [mm] \omega [/mm] = - [mm] \omega_0, [/mm] was im Widerspruch zu [mm] \omega, \omega_0 [/mm] >0 steht.

Nun also [mm] \omega [/mm] = [mm] \omega_0 [/mm]
Dann [mm] \psi(x) [/mm] = q*(x) [mm] \* e^{i \omega_0 x}. [/mm] Grad q* = 1+ grad(q)=1
Also [mm] \psi(x) [/mm] = (b+cx) [mm] e^{i \omega_0 x} [/mm]
Einsetzen liefert nun ((b+ct) [mm] e^{i \omega_0 t})'' [/mm] + [mm] \gamma [/mm] ((b+ct) [mm] e^{i \omega_0 t})'+ \omega_0^2 [/mm] ((b+ct) [mm] e^{i \omega_0 t}) [/mm] = A [mm] e^{i \omega_0 t} \gdw c=\bruch{A}{2 i \omega_0} [/mm] und b beliebig.


Mit Teil c) komme ich leider nicht wirklich klar:
Aus Teil a habe ich ja bereits die Nullstellen des charakteristischen Polynoms und das Fundamentalsystem der homogenen Gleichung

Ich habe nun überlegt, dass ich nun
y'' + [mm] \gamma [/mm] y' + [mm] \omega_0^2 [/mm] y = [mm] a_1 [/mm] * [mm] e^{i \omega t} [/mm] + [mm] a_2* e^{i \omega t} [/mm] = [mm] (a_1 [/mm] + [mm] a_2) e^{i \omega t} [/mm] betrachten könnte, weiß aber gar nicht, ob das überhaupt so stimmt.
Was mir bei diesem Aufgabenteil Probleme bereitet sind sin und cos auf der rechten Seite und ich kann damit noch nicht so ganz etwas anfangen...
Kann mir jemand hier weiterhelfen?


Vielen Dank im Voraus!

Schönen Feiertag, Pia


        
Bezug
Lin. DGL höherer Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Do 30.05.2013
Autor: MathePower

Hallo Pia90,

> Es seien  [mm]\gamma \ge[/mm] 0, [mm]\omega_0, \omega[/mm] > 0, A [mm]\in \IC[/mm] und
> [mm]a_1, a_2 \in[/mm] IR.
>  
> a) Bestimmen Sie die allgemeine (reelle) Lösung von
> [mm]y''+\gamma y'+\omega_0^2y[/mm] = 0.
>  b) Bestimmen Sie eine partikuläre (komplexe) Lösung von
> [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]Ae^{i \omega t}.[/mm]
>  c) Bestimmen
> Sie eine partikuläre (reelle) Lösung von
>  [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]a_1 cos(\omega[/mm] t) + [mm]a_2 sin(\omega[/mm]
> t)
>  Hallo zusammen,
>  
> ich sitze nun seit einigen Tagen an den oben genannten
> Aufgaben(teilen) und versuche diese zu lösen.
>  Teil a) und b) habe ich glaube ich soweit hinbekommen,
> aber vielleicht könnte jemand von euch da mal
> drüberschauen, ob das auch richtig ist?
>  Bei Teil c) hänge ich allerdings und kriege das noch
> nicht hin. Ich wäre euch bei der Aufgabe für Tipps,
> Hinweise etc also sehr dankbar :)
>  
> Also zunächst Teil a):
>  
> Charakteristisches Polynom: P(t)= [mm]t^2+\gamma t+\omega_0^2[/mm]
>  
> P(t) = 0 [mm]\gdw (t+\bruch{\gamma}{2})^2[/mm] = [mm]\bruch{\gamma^2}{4}[/mm]
> - [mm]\omega_0^2[/mm]
>  
> 1. Fall: [mm]\bruch{\gamma^2}{4}=\omega_0^2[/mm]
>  t=- [mm]\bruch{\gamma}{2}[/mm] (doppelt)
>  Also Fundamentalsystem: x [mm]\mapsto e^{- \bruch{\gamma}{2}x};[/mm]
> x [mm]\mapsto[/mm] x * [mm]e^{- \bruch{\gamma}{2}x}[/mm]
>  
> 2. Fall: [mm]\bruch{\gamma^2}{4}[/mm] > [mm]\omega_0^2[/mm]
>  t= - [mm]\bruch{\gamma}{2} \pm \wurzel{\bruch{\gamma^2}{4}- \omega_0^2}[/mm]
>  
> Fundamentalsystem: x [mm]\mapsto e^{(- \bruch{\gamma}{2}+ \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x},[/mm]
> x [mm]\mapsto e^{(- \bruch{\gamma}{2}- \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x}[/mm]
>  
> 3. Fall: [mm]\bruch{\gamma^2}{4}[/mm] < [mm]\omega_0^2[/mm]
>  t= [mm]\bruch{1}{2}(-\gamma \pm[/mm] i [mm]\wurzel{4 \omega_0^2 - \gamma^2})[/mm]
>  
> Fundamentalsystem: x [mm]\mapsto e^{\bruch{1}{2}(-\gamma + i \wurzel{4 \omega_0^2 - \gamma^2})x},[/mm]
> x [mm]\mapsto e^{\bruch{1}{2}(-\gamma - i \wurzel{4 \omega_0^2 - \gamma^2})x}[/mm]
>  
>
> Teil b) :
>  In Fall 1 und 2, sowie in Fall 3 für [mm]\gamma[/mm] >0, ist die
> partikuläre Lösung
>  [mm]\psi[/mm] (x) = [mm]\bruch{A}{P(i \omega)}*e^{i \omega x}[/mm] =
> [mm]\bruch{A}{(i \omega)^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
> = [mm]\bruch{A}{- \omega^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
>  
> Für [mm]\gamma=0[/mm] in Fall 3 sind [mm]\mu[/mm] = [mm]\pm[/mm] i [mm]\omega_0[/mm]
> Nullstellen von P, wobei [mm]\mu[/mm] = - i [mm]\omega_0[/mm] nicht
> definiert, da dann [mm]\omega[/mm] = - [mm]\omega_0,[/mm] was im Widerspruch
> zu [mm]\omega, \omega_0[/mm] >0 steht.
>  
> Nun also [mm]\omega[/mm] = [mm]\omega_0[/mm]
>  Dann [mm]\psi(x)[/mm] = q*(x) [mm]\* e^{i \omega_0 x}.[/mm] Grad q* = 1+
> grad(q)=1
>  Also [mm]\psi(x)[/mm] = (b+cx) [mm]e^{i \omega_0 x}[/mm]
>  Einsetzen liefert
> nun ((b+ct) [mm]e^{i \omega_0 t})''[/mm] + [mm]\gamma[/mm] ((b+ct) [mm]e^{i \omega_0 t})'+ \omega_0^2[/mm]
> ((b+ct) [mm]e^{i \omega_0 t})[/mm] = A [mm]e^{i \omega_0 t} \gdw c=\bruch{A}{2 i \omega_0}[/mm]
> und b beliebig.
>


Daß b hier beliebig ist, ist kein Wunder,
denn [mm]e^{i*\omega_{0}*t}[/mm] ist ja Lösung der homogenen DGL.


>
> Mit Teil c) komme ich leider nicht wirklich klar:
>  Aus Teil a habe ich ja bereits die Nullstellen des
> charakteristischen Polynoms und das Fundamentalsystem der
> homogenen Gleichung
>  
> Ich habe nun überlegt, dass ich nun
> y'' + [mm]\gamma[/mm] y' + [mm]\omega_0^2[/mm] y = [mm]a_1[/mm] * [mm]e^{i \omega t}[/mm] +
> [mm]a_2* e^{i \omega t}[/mm] = [mm](a_1[/mm] + [mm]a_2) e^{i \omega t}[/mm] betrachten
> könnte, weiß aber gar nicht, ob das überhaupt so
> stimmt.
>  Was mir bei diesem Aufgabenteil Probleme bereitet sind sin
> und cos auf der rechten Seite und ich kann damit noch nicht
> so ganz etwas anfangen...
>  Kann mir jemand hier weiterhelfen?
>  


Hier empfiehlt sich die reelle Rechnung.


>
> Vielen Dank im Voraus!
>  
> Schönen Feiertag, Pia

>


Gruss
MathePower  

Bezug
                
Bezug
Lin. DGL höherer Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Do 30.05.2013
Autor: Pia90

Danke zunächst einmal für die Antwort!

> Hallo Pia90,
>  
> > Es seien  [mm]\gamma \ge[/mm] 0, [mm]\omega_0, \omega[/mm] > 0, A [mm]\in \IC[/mm] und
> > [mm]a_1, a_2 \in[/mm] IR.
>  >  
> > a) Bestimmen Sie die allgemeine (reelle) Lösung von
> > [mm]y''+\gamma y'+\omega_0^2y[/mm] = 0.
>  >  b) Bestimmen Sie eine partikuläre (komplexe) Lösung
> von
> > [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]Ae^{i \omega t}.[/mm]
>  >  c)
> Bestimmen
> > Sie eine partikuläre (reelle) Lösung von
>  >  [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]a_1 cos(\omega[/mm] t) + [mm]a_2 sin(\omega[/mm]
> > t)
>  >  Hallo zusammen,
>  >  
> > ich sitze nun seit einigen Tagen an den oben genannten
> > Aufgaben(teilen) und versuche diese zu lösen.
>  >  Teil a) und b) habe ich glaube ich soweit hinbekommen,
> > aber vielleicht könnte jemand von euch da mal
> > drüberschauen, ob das auch richtig ist?
>  >  Bei Teil c) hänge ich allerdings und kriege das noch
> > nicht hin. Ich wäre euch bei der Aufgabe für Tipps,
> > Hinweise etc also sehr dankbar :)
>  >  
> > Also zunächst Teil a):
>  >  
> > Charakteristisches Polynom: P(t)= [mm]t^2+\gamma t+\omega_0^2[/mm]
>  
> >  

> > P(t) = 0 [mm]\gdw (t+\bruch{\gamma}{2})^2[/mm] = [mm]\bruch{\gamma^2}{4}[/mm]
> > - [mm]\omega_0^2[/mm]
>  >  
> > 1. Fall: [mm]\bruch{\gamma^2}{4}=\omega_0^2[/mm]
>  >  t=- [mm]\bruch{\gamma}{2}[/mm] (doppelt)
>  >  Also Fundamentalsystem: x [mm]\mapsto e^{- \bruch{\gamma}{2}x};[/mm]
> > x [mm]\mapsto[/mm] x * [mm]e^{- \bruch{\gamma}{2}x}[/mm]
>  >  
> > 2. Fall: [mm]\bruch{\gamma^2}{4}[/mm] > [mm]\omega_0^2[/mm]
>  >  t= - [mm]\bruch{\gamma}{2} \pm \wurzel{\bruch{\gamma^2}{4}- \omega_0^2}[/mm]
>  
> >  

> > Fundamentalsystem: x [mm]\mapsto e^{(- \bruch{\gamma}{2}+ \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x},[/mm]
> > x [mm]\mapsto e^{(- \bruch{\gamma}{2}- \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x}[/mm]
>  
> >  

> > 3. Fall: [mm]\bruch{\gamma^2}{4}[/mm] < [mm]\omega_0^2[/mm]
>  >  t= [mm]\bruch{1}{2}(-\gamma \pm[/mm] i [mm]\wurzel{4 \omega_0^2 - \gamma^2})[/mm]
>  
> >  

> > Fundamentalsystem: x [mm]\mapsto e^{\bruch{1}{2}(-\gamma + i \wurzel{4 \omega_0^2 - \gamma^2})x},[/mm]
> > x [mm]\mapsto e^{\bruch{1}{2}(-\gamma - i \wurzel{4 \omega_0^2 - \gamma^2})x}[/mm]
>  
> >  

> >
> > Teil b) :
>  >  In Fall 1 und 2, sowie in Fall 3 für [mm]\gamma[/mm] >0, ist
> die
> > partikuläre Lösung
>  >  [mm]\psi[/mm] (x) = [mm]\bruch{A}{P(i \omega)}*e^{i \omega x}[/mm] =
> > [mm]\bruch{A}{(i \omega)^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
> > = [mm]\bruch{A}{- \omega^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
>  
> >  

> > Für [mm]\gamma=0[/mm] in Fall 3 sind [mm]\mu[/mm] = [mm]\pm[/mm] i [mm]\omega_0[/mm]
> > Nullstellen von P, wobei [mm]\mu[/mm] = - i [mm]\omega_0[/mm] nicht
> > definiert, da dann [mm]\omega[/mm] = - [mm]\omega_0,[/mm] was im Widerspruch
> > zu [mm]\omega, \omega_0[/mm] >0 steht.
>  >  
> > Nun also [mm]\omega[/mm] = [mm]\omega_0[/mm]
>  >  Dann [mm]\psi(x)[/mm] = q*(x) [mm]\* e^{i \omega_0 x}.[/mm] Grad q* = 1+
> > grad(q)=1
>  >  Also [mm]\psi(x)[/mm] = (b+cx) [mm]e^{i \omega_0 x}[/mm]
>  >  Einsetzen
> liefert
> > nun ((b+ct) [mm]e^{i \omega_0 t})''[/mm] + [mm]\gamma[/mm] ((b+ct) [mm]e^{i \omega_0 t})'+ \omega_0^2[/mm]
> > ((b+ct) [mm]e^{i \omega_0 t})[/mm] = A [mm]e^{i \omega_0 t} \gdw c=\bruch{A}{2 i \omega_0}[/mm]
> > und b beliebig.
>  >

>
>
> Daß b hier beliebig ist, ist kein Wunder,
>  denn [mm]e^{i*\omega_{0}*t}[/mm] ist ja Lösung der homogenen DGL.

Sind meine Ausführungen denn insgesamt richtig?

>
>
> >
> > Mit Teil c) komme ich leider nicht wirklich klar:
>  >  Aus Teil a habe ich ja bereits die Nullstellen des
> > charakteristischen Polynoms und das Fundamentalsystem der
> > homogenen Gleichung
>  >  
> > Ich habe nun überlegt, dass ich nun
> > y'' + [mm]\gamma[/mm] y' + [mm]\omega_0^2[/mm] y = [mm]a_1[/mm] * [mm]e^{i \omega t}[/mm] +
> > [mm]a_2* e^{i \omega t}[/mm] = [mm](a_1[/mm] + [mm]a_2) e^{i \omega t}[/mm] betrachten
> > könnte, weiß aber gar nicht, ob das überhaupt so
> > stimmt.
>  >  Was mir bei diesem Aufgabenteil Probleme bereitet sind
> sin
> > und cos auf der rechten Seite und ich kann damit noch nicht
> > so ganz etwas anfangen...
>  >  Kann mir jemand hier weiterhelfen?
>  >  
>
>
> Hier empfiehlt sich die reelle Rechnung.

Ich muss gestehen, dass ich hiermit leider nicht allzu viel anfangen kann... Ich glaube ich stehe vollkommen auf dem Schlauch...
Wie muss ich denn dann ansetzen?

>  
>
> >
> > Vielen Dank im Voraus!
>  >  
> > Schönen Feiertag, Pia
>  >
>  
>
> Gruss
>  MathePower    


Bezug
                        
Bezug
Lin. DGL höherer Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Do 30.05.2013
Autor: MathePower

Hallo Pia90,

> Danke zunächst einmal für die Antwort!
>  
> > Hallo Pia90,
>  >  
> > > Es seien  [mm]\gamma \ge[/mm] 0, [mm]\omega_0, \omega[/mm] > 0, A [mm]\in \IC[/mm] und
> > > [mm]a_1, a_2 \in[/mm] IR.
>  >  >  
> > > a) Bestimmen Sie die allgemeine (reelle) Lösung von
> > > [mm]y''+\gamma y'+\omega_0^2y[/mm] = 0.
>  >  >  b) Bestimmen Sie eine partikuläre (komplexe)
> Lösung
> > von
> > > [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]Ae^{i \omega t}.[/mm]
>  >  >  c)
> > Bestimmen
> > > Sie eine partikuläre (reelle) Lösung von
>  >  >  [mm]y''+\gamma y'+\omega_0^2y[/mm] = [mm]a_1 cos(\omega[/mm] t) + [mm]a_2 sin(\omega[/mm]
> > > t)
>  >  >  Hallo zusammen,
>  >  >  
> > > ich sitze nun seit einigen Tagen an den oben genannten
> > > Aufgaben(teilen) und versuche diese zu lösen.
>  >  >  Teil a) und b) habe ich glaube ich soweit
> hinbekommen,
> > > aber vielleicht könnte jemand von euch da mal
> > > drüberschauen, ob das auch richtig ist?
>  >  >  Bei Teil c) hänge ich allerdings und kriege das
> noch
> > > nicht hin. Ich wäre euch bei der Aufgabe für Tipps,
> > > Hinweise etc also sehr dankbar :)
>  >  >  
> > > Also zunächst Teil a):
>  >  >  
> > > Charakteristisches Polynom: P(t)= [mm]t^2+\gamma t+\omega_0^2[/mm]
>  
> >  

> > >  

> > > P(t) = 0 [mm]\gdw (t+\bruch{\gamma}{2})^2[/mm] = [mm]\bruch{\gamma^2}{4}[/mm]
> > > - [mm]\omega_0^2[/mm]
>  >  >  
> > > 1. Fall: [mm]\bruch{\gamma^2}{4}=\omega_0^2[/mm]
>  >  >  t=- [mm]\bruch{\gamma}{2}[/mm] (doppelt)
>  >  >  Also Fundamentalsystem: x [mm]\mapsto e^{- \bruch{\gamma}{2}x};[/mm]
> > > x [mm]\mapsto[/mm] x * [mm]e^{- \bruch{\gamma}{2}x}[/mm]
>  >  >  
> > > 2. Fall: [mm]\bruch{\gamma^2}{4}[/mm] > [mm]\omega_0^2[/mm]
>  >  >  t= - [mm]\bruch{\gamma}{2} \pm \wurzel{\bruch{\gamma^2}{4}- \omega_0^2}[/mm]
>  
> >  

> > >  

> > > Fundamentalsystem: x [mm]\mapsto e^{(- \bruch{\gamma}{2}+ \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x},[/mm]
> > > x [mm]\mapsto e^{(- \bruch{\gamma}{2}- \wurzel{\bruch{\gamma^2}{4}- \omega_0^2})x}[/mm]
>  
> >  

> > >  

> > > 3. Fall: [mm]\bruch{\gamma^2}{4}[/mm] < [mm]\omega_0^2[/mm]
>  >  >  t= [mm]\bruch{1}{2}(-\gamma \pm[/mm] i [mm]\wurzel{4 \omega_0^2 - \gamma^2})[/mm]
>  
> >  

> > >  

> > > Fundamentalsystem: x [mm]\mapsto e^{\bruch{1}{2}(-\gamma + i \wurzel{4 \omega_0^2 - \gamma^2})x},[/mm]
> > > x [mm]\mapsto e^{\bruch{1}{2}(-\gamma - i \wurzel{4 \omega_0^2 - \gamma^2})x}[/mm]
>  
> >  

> > >  

> > >
> > > Teil b) :
>  >  >  In Fall 1 und 2, sowie in Fall 3 für [mm]\gamma[/mm] >0, ist
> > die
> > > partikuläre Lösung
>  >  >  [mm]\psi[/mm] (x) = [mm]\bruch{A}{P(i \omega)}*e^{i \omega x}[/mm] =
> > > [mm]\bruch{A}{(i \omega)^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
> > > = [mm]\bruch{A}{- \omega^2 + \gamma i \omega + \omega_0^2}*e^{i \omega x}[/mm]
>  
> >  

> > >  

> > > Für [mm]\gamma=0[/mm] in Fall 3 sind [mm]\mu[/mm] = [mm]\pm[/mm] i [mm]\omega_0[/mm]
> > > Nullstellen von P, wobei [mm]\mu[/mm] = - i [mm]\omega_0[/mm] nicht
> > > definiert, da dann [mm]\omega[/mm] = - [mm]\omega_0,[/mm] was im Widerspruch
> > > zu [mm]\omega, \omega_0[/mm] >0 steht.
>  >  >  
> > > Nun also [mm]\omega[/mm] = [mm]\omega_0[/mm]
>  >  >  Dann [mm]\psi(x)[/mm] = q*(x) [mm]\* e^{i \omega_0 x}.[/mm] Grad q* =
> 1+
> > > grad(q)=1
>  >  >  Also [mm]\psi(x)[/mm] = (b+cx) [mm]e^{i \omega_0 x}[/mm]
>  >  >  
> Einsetzen
> > liefert
> > > nun ((b+ct) [mm]e^{i \omega_0 t})''[/mm] + [mm]\gamma[/mm] ((b+ct) [mm]e^{i \omega_0 t})'+ \omega_0^2[/mm]
> > > ((b+ct) [mm]e^{i \omega_0 t})[/mm] = A [mm]e^{i \omega_0 t} \gdw c=\bruch{A}{2 i \omega_0}[/mm]
> > > und b beliebig.
>  >  >

> >
> >
> > Daß b hier beliebig ist, ist kein Wunder,
>  >  denn [mm]e^{i*\omega_{0}*t}[/mm] ist ja Lösung der homogenen
> DGL.
>
> Sind meine Ausführungen denn insgesamt richtig?
>  


Ja.

> >
> >
> > >
> > > Mit Teil c) komme ich leider nicht wirklich klar:
>  >  >  Aus Teil a habe ich ja bereits die Nullstellen des
> > > charakteristischen Polynoms und das Fundamentalsystem der
> > > homogenen Gleichung
>  >  >  
> > > Ich habe nun überlegt, dass ich nun
> > > y'' + [mm]\gamma[/mm] y' + [mm]\omega_0^2[/mm] y = [mm]a_1[/mm] * [mm]e^{i \omega t}[/mm] +
> > > [mm]a_2* e^{i \omega t}[/mm] = [mm](a_1[/mm] + [mm]a_2) e^{i \omega t}[/mm] betrachten
> > > könnte, weiß aber gar nicht, ob das überhaupt so
> > > stimmt.
>  >  >  Was mir bei diesem Aufgabenteil Probleme bereitet
> sind
> > sin
> > > und cos auf der rechten Seite und ich kann damit noch nicht
> > > so ganz etwas anfangen...
>  >  >  Kann mir jemand hier weiterhelfen?
>  >  >  
> >
> >
> > Hier empfiehlt sich die reelle Rechnung.
>  
> Ich muss gestehen, dass ich hiermit leider nicht allzu viel
> anfangen kann... Ich glaube ich stehe vollkommen auf dem
> Schlauch...
>  Wie muss ich denn dann ansetzen?
>  

Das kommt darauf an, ob die rechte Seite der DGL eine Lösung
der homogenen DGL ist oder nicht,.


Der Ansatz im Falle, daß die rechte Seite der DGL
keine Lösung der  homogenen DGL ist:

[mm]c_{1}*\cos\left(\omega*t\right)+c_{2}*\sin\left(\omega*t\right)[/mm]


> >  

> >
> > >
> > > Vielen Dank im Voraus!
>  >  >  
> > > Schönen Feiertag, Pia
>  >  >
>  >  
> >
> > Gruss
>  >  MathePower    
>  


Gruss
MathePower

Bezug
                                
Bezug
Lin. DGL höherer Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Di 04.06.2013
Autor: Pia90

Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]