matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLin. Abbildung, Dimension Kern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Lin. Abbildung, Dimension Kern
Lin. Abbildung, Dimension Kern < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lin. Abbildung, Dimension Kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 So 07.01.2007
Autor: Informacao

Aufgabe
Sei K ein Körper und sei f: [mm] K^{5} \to K^{2} [/mm] eine surjektive Abbildung. Geben Sie die Dimension des Kernes von f an.  

Hallo,

So, nun habe ich noch eine Aufgabe vor mir:
könnt ihr mir bitte mal erklären, was
- ich da zu tun habe?
- wie ich dann die Dimension des Kerns bestimmen kann?
Wäre über Hilfe froh!

Viele Grüße
Informacao

        
Bezug
Lin. Abbildung, Dimension Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 So 07.01.2007
Autor: schachuzipus

Jo hallo

Es gibt doch die Dimensionsformel


Sei f eine lineare Abbildung

dimV = dim Bild(f) + dim Kern(f)

Nun ist V = [mm] K^5, [/mm] also dimV=5

Außerdem ist f surjektiv, dh. für das Bild.....

Gruß

schachuzipus

Bezug
                
Bezug
Lin. Abbildung, Dimension Kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 So 07.01.2007
Autor: Informacao

Upsala, achso.. so einfach ist das?

Also heißt das für die Dimension des Kerns, das diese 5 ist?

Geht das immer so?

Viele Grüße
Informacao

Bezug
                        
Bezug
Lin. Abbildung, Dimension Kern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 So 07.01.2007
Autor: schachuzipus

Moin

nein,

f ist surjektiv bedeutet ja, dass jeder Vektor aus dem Bildraum [mm] K^2 [/mm] getroffen wird,
also ist die Dimension des Bildes 2

Nach der Dimensionsformel ist also dim Kern(f)=5-2=3

Gruß

schachuzipus

Bezug
                        
Bezug
Lin. Abbildung, Dimension Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 So 07.01.2007
Autor: mathedepp_No.1

hi,

> Upsala, achso.. so einfach ist das?
>
> Also heißt das für die Dimension des Kerns, das diese 5
> ist?
>

wie kommst du denn da drauf??

schachuzipus, hat dir schon die ausreichenden Hinweise gegeben..
Also du kennst jetzt die dimensionsfomel:

dimV = dim ker(f) + dim Bild (f)

du weißt: dimV = 5

Mach dir klar, was es bedeutet dass die lineare Abb. surjektiv ist!!
wie groß ist also die Dimesion deines Bildbereiches wenn jedes [mm] k\in \IK^2 [/mm] getroffen wird?? (musst es nur noch ablesen...)

wenn du dann die dimension des Bildes hast muss du nur die Dimensionsformel umstellen um die Dimension des Kerns von f ausrechnen zu können!!

viele Grüße, der mathedepp_No.1



Bezug
                                
Bezug
Lin. Abbildung, Dimension Kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 So 07.01.2007
Autor: Informacao

Ah Mathedepp, der keiner ist.... ich glaube ich weiß jetzt, was ich zu tun habe.. und ich beginne zu verstehen..

Also ist jetzt dim(Kern) = 2, oder ?

Liebe Grüße
Informacao

Bezug
                                        
Bezug
Lin. Abbildung, Dimension Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 So 07.01.2007
Autor: mathedepp_No.1


> Ah Mathedepp, der keiner ist.... ich glaube ich weiß jetzt,
> was ich zu tun habe.. und ich beginne zu verstehen..
>  
> Also ist jetzt dim(Kern) = 2, oder ?

Leider immernoch nicht...:-(

Denk mal dass du dich verschrieben hast du sagen wolltet, dass dim Bild(f) = 2 ist. (da Abb. Surjektiv ist, d.h. alle elemente aus [mm] \IK^2 [/mm] werden getroffen)

also gilt nun: 5 = dim ker(f) + 2
Wie groß ist jetzt also dim ker(f) ??


falls du's noch nicht verstanden haben solltest, was ich nicht glaube:-), dann meld dich nochmal....

viele grüße, mathedepp_No.1

Bezug
                                                
Bezug
Lin. Abbildung, Dimension Kern: Richtig?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 So 07.01.2007
Autor: Informacao

Oh ja.. 3 .. meinte ich doch ;-)

Jetzt ists aber richtig, oder?
Viele Grüße, Informacao

Bezug
                                                        
Bezug
Lin. Abbildung, Dimension Kern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 So 07.01.2007
Autor: mathedepp_No.1


> Oh ja.. 3 .. meinte ich doch ;-)
>  
> Jetzt ists aber richtig, oder?


RRRRRRRRRRRRRRRRISCHTISCH!!!!:-)

lg, mathedepp_No.1


Bezug
        
Bezug
Lin. Abbildung, Dimension Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 So 07.01.2007
Autor: DaMenge

Hallo,

bitte benutzt ab und zu mal die Suche, die Frage wurde schon öfters gestellt.

z.B.
HIER
oder
HIER

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]