matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteLimsup berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Limsup berechnen
Limsup berechnen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limsup berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 Mo 02.07.2012
Autor: marianne88

Guten Tag

Ich habe diesen Ausdruck:

[mm] \lim\sup_{x\to x_0}\frac{f(x)-f(x_0)-p(x-x_0)-\frac{1}{2}A(x-x_0)(x-x_0)}{|x-x_0|^2}\le 0[/mm]

für eine Funktion $f$. Nun soll ich alle Paare [mm] $(p,A)\in \mathbb{R}\times\mathbb{R}$ [/mm] berechnen, so dass obiges gilt für die Funktion $f(x):=-|x|$

Natürlich muss ich dazu eine Fallunterscheidung betrachten. Sei also [mm] $x_0>0$, [/mm] d.h. ich erhalte folgenden Grenzwert:

[mm] \lim\sup_{x\to x_0}\frac{-|x|-x_0-p(x-x_0)-\frac{1}{2}A(x-x_0)(x-x_0)}{|x-x_0|^2}\le 0[/mm]

Eigentlich muss ich ja nur den Zähler betrachten, also:

[mm] \lim\sup_{x\to x_0}-|x|-x_0-p(x-x_0)-\frac{1}{2}A(x-x_0)(x-x_0)\le 0[/mm]

Ebenfalls weiss ich, dass der erste und zweite Term sicherlich negativ sind. Der vierte Term ist negativ, wenn $A$ positiv ist und positive, wenn $A$ negativ ist.
Wie kann ich jetzt solche Paare bestimmen, resp. alle Paare?

Danke und Liebe Grüsse

marianne88

        
Bezug
Limsup berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Mo 02.07.2012
Autor: fred97


> Guten Tag
>  
> Ich habe diesen Ausdruck:
>  
> [mm]\lim\sup_{x\to x_0}\frac{f(x)-f(x_0)-p(x-x_0)-\frac{1}{2}A(x-x_0)(x-x_0)}{|x-x_0|^2}\le 0[/mm]
>  
> für eine Funktion [mm]f[/mm]. Nun soll ich alle Paare [mm](p,A)\in \mathbb{R}\times\mathbb{R}[/mm]
> berechnen, so dass obiges gilt für die Funktion
> [mm]f(x):=-|x|[/mm]
>  
> Natürlich muss ich dazu eine Fallunterscheidung
> betrachten. Sei also [mm]x_0>0[/mm], d.h. ich erhalte folgenden
> Grenzwert:
>  
> [mm]\lim\sup_{x\to x_0}\frac{-|x|-x_0-p(x-x_0)-\frac{1}{2}A(x-x_0)(x-x_0)}{|x-x_0|^2}\le 0[/mm]

Es ist [mm] -f(x_0)=-(-|x_0|)=|x_0| [/mm]    !!!!

>  
> Eigentlich muss ich ja nur den Zähler betrachten, also:
>  
> [mm]\lim\sup_{x\to x_0}-|x|-x_0-p(x-x_0)-\frac{1}{2}A(x-x_0)(x-x_0)\le 0[/mm]

Ich würde den Nenner nicht weglassen !

Es ist [mm] A(x-x_0)(x-x_0)=A(x-x_0)^2=A|x-x_0|^2 [/mm]

Hilft das ?

FRED

>  
> Ebenfalls weiss ich, dass der erste und zweite Term
> sicherlich negativ sind. Der vierte Term ist negativ, wenn
> [mm]A[/mm] positiv ist und positive, wenn [mm]A[/mm] negativ ist.
>  Wie kann ich jetzt solche Paare bestimmen, resp. alle
> Paare?
>  
> Danke und Liebe Grüsse
>  
> marianne88


Bezug
                
Bezug
Limsup berechnen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:04 Mo 02.07.2012
Autor: marianne88

Guten Tag fred

Danke für die schnelle Antwort. Das habe ich mir auch überlegt, weiter bin ich damit nicht gekommen. Denn:

[mm] \frac{-|x|-x_0-p(x-x_0)}{|x-x_0|^2}-\frac{1}{2}A\le 0 \gdw \frac{-|x|-x_0-p(x-x_0)}{|x-x_0|^2}\le\frac{1}{2}A[/mm]

Sollte mir das weiterhelfen?

Liebe Grüsse

marianne88

Bezug
                        
Bezug
Limsup berechnen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 17.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]