matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenLimes von trig.  Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Limes von trig. Funktionen
Limes von trig. Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes von trig. Funktionen: Beispiel, Frage allgemein
Status: (Frage) beantwortet Status 
Datum: 14:52 Di 07.02.2006
Autor: FlorianJ

Aufgabe
Beispielaufgabe:

[mm] \limes_{x\rightarrow\infty} \bruch{sinh(x)-cosh(x)}{x} [/mm]

Hallo! :-)
Meine Frage ist. Wie geht man generell an Aufgaben heran, die trigonometrische Funktionen besitzen? Schätzt man da ab oder wie macht man es?

sin(x)/x zB ist das sin(1) ?
bei cos(x)/x ist es jedenfalls was anderes.

Herzlichen Dank für eure Mühe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Limes von trig. Funktionen: Erweitern
Status: (Antwort) fertig Status 
Datum: 15:08 Di 07.02.2006
Autor: Roadrunner

Hallo Florian!



Zum einen musst Du hier aufpassen, es handelt sich hier um die Hyperbolicus-Funktion [mm] $\sinh(x)$ [/mm] und [mm] $\cosh(x)$ [/mm] , die folgendermaßen definiert sind:

[mm] $\sinh(x) [/mm] \ := \ [mm] \bruch{e^x-e^{-x}}{2}$ [/mm]

[mm] $\cosh(x) [/mm] \ := \ [mm] \bruch{e^x+e^{-x}}{2}$ [/mm]


Erweitere Deinen Bruch mit [mm] $\sin(x) [/mm] \ [mm] \red{+} [/mm] \ [mm] \cosh(x)$ [/mm] und bedenke, dass gilt:

[mm] $\cosh^2(x) -\sinh^2(x) [/mm] \ = \ 1$





Ansonsten ist die Grenzwertbetrachtung bei trigonometrischen Funktion nicht wesentlich anders als bei herkömmlichen Grenzwerten. Man sollte aber schon einige Zusammenhänge kennen (Additionstheorem oder trigonometrischer Pythagoras [mm] $\sin^2(x)+\cos^2(x) [/mm] \ = \ 1$ ).


Gruß vom
Roadrunner


Bezug
                
Bezug
Limes von trig. Funktionen: Bedankt!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:11 Di 07.02.2006
Autor: FlorianJ

ok danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]