Limes superior < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimme den limes sup und den limes inf der Folge [mm] (a_n)_n>=1 [/mm] mit
[mm] a_n:= \vmat{ 1+i^n}+1/n [/mm] |
Hallo Ihr Lieben,
so kurz vor der großen Silvesterknallerei sitze ich noch über einer Aufgabe.
Leider fehlt mit jegliche Idee. Die komplexe Zahl i verwirrt mich. Und durch das ^n sehe ich keine Möglichkeit es irgendwie zu ersetzen.
Ich würde mich über einen Tipp freuen.
Guten Rutsch und schon mal DANKE!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:16 Sa 31.12.2005 | Autor: | Loddar |
Hallo Tommi!
Mach folgende Fallunterscheidung bzw. betrachte folgende Teilfolgen:
1. $n \ = \ 4k$ [mm] $\Rightarrow$ $i^n [/mm] \ = \ [mm] i^{4k} [/mm] \ = \ [mm] \left(i^4\right)^k [/mm] \ = \ [mm] (+1)^k [/mm] \ = \ 1$
2. $n \ = \ 4k+1$ [mm] $\Rightarrow$ $i^n [/mm] \ = \ [mm] i^{4k+1} [/mm] \ = \ [mm] i^{4k}*i [/mm] \ = \ (+1)*i \ =\ i$
3. $n \ = \ 4k+2$ [mm] $\Rightarrow$ $i^n [/mm] \ = \ [mm] i^{4k+2} [/mm] \ = \ [mm] i^{4k}*i^2 [/mm] \ = \ (+1)*(-1) \ = \ -1$
4. $n \ = \ 4k+3$ [mm] $\Rightarrow$ $i^n [/mm] \ = \ [mm] i^{4k+3} [/mm] \ = \ [mm] i^{4k}*i^2*i [/mm] \ = \ (+1)*(-1)*i \ = \ -i$
Und für den Betrag eine komplexen Zahl (also für die Fälle 2 und 4) gilt:
[mm] $|1\pm [/mm] i| \ = \ [mm] \wurzel{1^2+(\pm 1)^2 \ } [/mm] \ = \ [mm] \wurzel{2}$
[/mm]
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:54 Sa 31.12.2005 | Autor: | tommy1234 |
Vielen Dank und Guten Rutsch.
Bis zum nächsten Jahr
|
|
|
|