matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieLimes Superior (Mengenfolgen)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - Limes Superior (Mengenfolgen)
Limes Superior (Mengenfolgen) < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes Superior (Mengenfolgen): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 So 07.08.2022
Autor: Andrejtrikolor

Guten Abend an alle! Ich versuche den Limes Superior und Limes Inferior von Mengenfolgen besser zu verstehen und insgesamt einen Überblick über Ungleichungen und mögliche Fragestellungen dazu zu haben.


Wir haben in der Vorlesung folgende Definitionen gehabt:

Sei [mm] $(A_{n})_{n \in \mathbb{N}} \in \mathcal{P}(\Omega)^{\mathbb{N}}$ [/mm] eine Mengenfolge.

[mm] $\inf\limits_{k \ge n} A_{k} [/mm] := Inf( [mm] \{ A_{n}, A_{n + 1} \} [/mm] ) = [mm] \bigcap\limits_{k = n}^{\infty} A_{k} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \omega \in A_{j}\quad \forall\; j \ge n \}$ [/mm] und [mm] $\sup\limits_{k \ge n} A_{k} [/mm] := Sup( [mm] \{ A_{n}, A_{n + 1} \} [/mm] ) = [mm] \bigcup\limits_{k = n}^{\infty} A_{k} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \exists\; j \ge n: \omega \in A_{j} \}$ [/mm]

[mm] $\liminf\limits_{n \to \infty} A_{n} [/mm] := [mm] \sup\limits_{n \in \mathbb{N}} \inf\limits_{k \ge n} A_{k} [/mm] = [mm] \bigcup\limits_{n = 1}^{\infty} \inf\limits_{k \ge n} A_{k} [/mm] = [mm] \bigcup\limits_{n = 1}^{\infty} \bigcap\limits_{k = n}^{\infty} A_{k}$ [/mm] und [mm] $\limsup\limits_{n \to \infty} A_{n} [/mm] := [mm] \inf\limits_{n \in \mathbb{N}} \sup\limits_{k \ge n} A_{k} [/mm] = [mm] \bigcap\limits_{n = 1}^{\infty} \bigcup\limits_{k = n}^{\infty} A_{k}$ [/mm]


Nun gibt es für den Limes Superior und den Limes Inferior eine Interpretation.
Ich habe versucht, die Mengen umzuschreiben:


Es ist [mm] $\liminf\limits_{n \to \infty} A_{n} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \exists\; j \in \mathbb{N} : \omega \in \inf\limits_{k \ge j} \} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \exists\; j \in \mathbb{N} : \omega \in A_{n}\quad \forall\; n \ge j \} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \omega\; \text{ist in fast allen}\; A_{n}\; \text{enthalten} \}$ [/mm]


Es ist [mm] $\limsup\limits_{n \to \infty} A_{n} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \omega \in \sup\limits_{k \ge n} A_{k}\quad \forall\; n \in \mathbb{N} \} [/mm] = [mm] \{ \omega \in \Omega\; \vert \; \exists\; l \ge n: \omega \in A_{l}\quad \forall\; n \in \mathbb{N} \} [/mm] =  [mm] \{ \omega \in \Omega\; \vert \; \omega\; \text{ist in unendlich vielen}\; A_{n}\; \text{enthalten} \}$ [/mm]


Ist das so mathematisch korrekt aufgeschrieben?



Zudem habe ich zum Limes Superior und Limes Inferior ein paar Ungleichungen recherchiert, um mich mit den beiden Begriffen warm zu werden. Ich habe bis jetzt folgende gefunden:



(1) [mm] $\emptyset \subseteq \liminf\limits_{n \to \infty} A_{n} \subseteq \limsup\limits_{n \to \infty} A_{n} \subseteq \Omega$ [/mm]

(2) [mm] $(\liminf\limits_{n \to \infty} A_{n})^{c} [/mm] = [mm] \limsup\limits_{n \to \infty} A_{n}^{c}$ [/mm]

(3) [mm] $\limsup\limits_{n \to \infty} A_{n} [/mm] = [mm] \left \{ \omega \in \Omega\; \vert \; \sum\limits_{n \in \mathbb{N}} I_{A_{n}}(\omega) = \infty \right \}$ [/mm] und  [mm] $\liminf\limits_{n \to \infty} A_{n} [/mm] = [mm] \left \{ \omega \in \Omega\; \vert \; \sum\limits_{n \in \mathbb{N}} I_{A_{n}^{c}}(\omega) < \infty \right \}$ [/mm]

(4) [mm] $\mu(\liminf\limits_{n \to \infty} A_{n}) \le \liminf\limits_{n \to \infty} \mu(A_{n})$ [/mm]  und [mm] $\mu(\limsup\limits_{n \to \infty} A_{n}) \ge \limsup\limits_{n \to \infty} \mu(A_{n})$ [/mm]

Für (1) - (3) habe ich einen Lösungsansatz.

Bei der (4) tu ich mich aber ziemlich schwer.  Hätte jemand eine Idee, wie man ansetzen könnte?


Liebe Grüße,
Andrej




        
Bezug
Limes Superior (Mengenfolgen): Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Di 09.08.2022
Autor: Gonozal_IX

Hiho,

> Es ist [mm]\liminf\limits_{n \to \infty} A_{n} = \{ \omega \in \Omega\; \vert \; \exists\; j \in \mathbb{N} : \omega \in \inf\limits_{k \ge j} \} = \{ \omega \in \Omega\; \vert \; \exists\; j \in \mathbb{N} : \omega \in A_{n}\quad \forall\; n \ge j \} = \{ \omega \in \Omega\; \vert \; \omega\; \text{ist in fast allen}\; A_{n}\; \text{enthalten} \}[/mm]

Bis auf die Tatsache, dass du in der ersten Menge vergessen hast, die [mm] $A_k$ [/mm] zu notieren: Ja.
Zum Verständnis: Man kann auch sagen, dass im Limes inferior alle Elemente enthalten sind, die ab einem bestimmten [mm] $A_{n_0}$ [/mm] in allen folgenden [mm] $A_n$ [/mm] enthalten sind.
Das entspricht der Formulierung "in fast allen".


> Es ist [mm]\limsup\limits_{n \to \infty} A_{n} = \{ \omega \in \Omega\; \vert \; \omega \in \sup\limits_{k \ge n} A_{k}\quad \forall\; n \in \mathbb{N} \} = \{ \omega \in \Omega\; \vert \; \exists\; l \ge n: \omega \in A_{l}\quad \forall\; n \in \mathbb{N} \} = \{ \omega \in \Omega\; \vert \; \omega\; \text{ist in unendlich vielen}\; A_{n}\; \text{enthalten} \}[/mm]

Auch hier eine etwas flapisgere Formulierung zum Verständnis: Der Limes superior enthält alle Elemente, die immer mal wieder in einem [mm] $A_n$ [/mm] vorkommen, egal wie lang man "läuft". Das entspricht der "in unendlich vielen" Definition.

> Bei der (4) tu ich mich aber ziemlich schwer.  Hätte
> jemand eine Idee, wie man ansetzen könnte?

Zeige: [mm] $\liminf_{n\to\infty} A_n \subseteq A_n$. [/mm] Der Rest folgt aus der Monotonie des Maßes. Für [mm] $\limsup$ [/mm] analog.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]