Lemma von Fatou? < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:53 So 01.06.2008 | Autor: | Ole-Wahn |
Aufgabe 1 | Sei [mm] $(\Omega [/mm] , A, [mm] \mu)$ [/mm] ein Maßraum und [mm] $f,f_n [/mm] : [mm] \Omega \rightarrow \IR,~n \in \IN$ [/mm] nicht negative [mm] $\mu$-integrierbare [/mm] Funktionen. Zu zeigen:
[mm] $\lim_{n \rightarrow \infty} \int_{\Omega} |f_n-f|d\mu [/mm] = 0 [mm] ~\Rightarrow~\lim_{n \rightarrow \infty} \int _{\Omega} f_n [/mm] d [mm] \mu [/mm] = [mm] \int_{\Omega} [/mm] f d [mm] \mu [/mm] |
Aufgabe 2 | Sei [mm] $lim_{n\rightarrow \infty} f_n [/mm] = f$ fast überall und [mm] $\lim_{n \rightarrow \infty} \int_{\Omega} f_n d\mu [/mm] = [mm] \int_{\Omega} [/mm] f d [mm] \mu$. [/mm] Dann ist
[mm] $\lim_{n \rightarrow \infty} \int_{\Omega} |f_n [/mm] -f| [mm] d\mu [/mm] = 0$ |
Hallo,
leider weiß ich nicht so recht, wie ich rangehen soll! Lemma von Fatou scheint der Top-Hinweis zu sein, allerdings fühl ich mich da nicht besonders sicher mit!! Wäre schön, wenn jemand mir das an Hand dieser Aufgabe nochmal verdeutlichen kann!!
Danke,
Ole
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:26 So 01.06.2008 | Autor: | felixf |
Hallo!
> Sei [mm](\Omega , A, \mu)[/mm] ein Maßraum und [mm]f,f_n : \Omega \rightarrow \IR,~n \in \IN[/mm]
> nicht negative [mm]\mu[/mm]-integrierbare Funktionen. Zu zeigen:
>
> [mm]$\lim_{n \rightarrow \infty} \int_{\Omega} |f_n-f|d\mu[/mm] = 0
> [mm]~\Rightarrow~\lim_{n \rightarrow \infty} \int _{\Omega} f_n[/mm]
> d [mm]\mu[/mm] = [mm]\int_{\Omega}[/mm] f d [mm]\mu[/mm]
Es gilt doch $| [mm] \int_\Omega [/mm] f [mm] \; d\mu [/mm] | [mm] \le \int_\Omeag [/mm] |f| [mm] \; d\mu$ [/mm] (wenn ihr das noch nicht hattet: zeige es! arbeite dafuer mit Treppenfunktionen, dass es fuer solche gilt folt aus der Dreiecksungleichung). Und die zu zeigende Aussage [mm] $\lim \int_\Omega f_n \; d\mu [/mm] = [mm] \int_\Omega [/mm] f [mm] \; d\mu$ [/mm] ist ja gerade aequivalent zu [mm] $\lim \int_\Omega f_n [/mm] - f [mm] \; d\mu [/mm] = 0$.
> Sei [mm]lim_{n\rightarrow \infty} f_n = f[/mm] fast überall und
> [mm]\lim_{n \rightarrow \infty} \int_{\Omega} f_n d\mu = \int_{\Omega} f d \mu[/mm].
> Dann ist
> [mm]\lim_{n \rightarrow \infty} \int_{\Omega} |f_n -f| d\mu = 0[/mm]
Ich vermute mal, dass du das Lemma von Fatou hier schon gebrauchen kannst. Dafuer kenn ich mich grad zu wenig mit Masstheorie aus
LG Felix
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:32 So 01.06.2008 | Autor: | Merle23 |
Zu Aufgabe 1: Statt lim kannste auch lim inf schreiben, da ja die Folge konvergiert (gegen Null). Dann kannste mit dem Lemma von Fatou den lim inf ins Integral reinziehen. Also muss lim inf [mm] (f_n [/mm] - f) fast überall Null sein.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:56 Mo 02.06.2008 | Autor: | Merle23 |
Zu Aufgabe 2: Nimm das Integral über f d-mü nach links rüber und zieh es in den Limes rein. Dann die Integrale zusammenfassen. Das [mm] f_n=f [/mm] f.ü. brauchst du für das Setzen der Betragsstriche.
|
|
|
|