matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenLeibniz Kriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Leibniz Kriterium
Leibniz Kriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibniz Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:29 Fr 11.01.2013
Autor: piriyaie

Aufgabe
[mm] \summe_{n=1}^{\infty} \bruch{(n+1)^{n-1}}{(-n)^{n}} [/mm]


Hallo,

ich möchte wissen ob die obige Reihe konvergiert oder divergiert.

also ich weiß, dass die reihe alternierend ist. und ich weiß auch, dass ich hier das leibniskriterium anwenden muss. dieses kriterium besagt, dass eine reihe dessen folge eine nullfolge ist also gegen null konvergiert und monoton fallend ist (also der Betrag der Folge [mm] |a_{n}|) [/mm] konvergent ist.

allerdings weiß ich nicht wie ich hier die monotonie nachweisen soll und ich weiß nicht wie ich hier zeigen soll, dass die folge gegen 0 konvergiert.

danke schonmal.

grüße
ali

        
Bezug
Leibniz Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Sa 12.01.2013
Autor: abakus


> [mm]\summe_{n=1}^{\infty} \bruch{(n+1)^{n-1}}{(-n)^{n}}[/mm]
>  
> Hallo,
>  
> ich möchte wissen ob die obige Reihe konvergiert oder
> divergiert.
>  
> also ich weiß, dass die reihe alternierend ist. und ich
> weiß auch, dass ich hier das leibniskriterium anwenden
> muss. dieses kriterium besagt, dass eine reihe dessen folge
> eine nullfolge ist also gegen null konvergiert und monoton
> fallend ist (also der Betrag der Folge [mm]|a_{n}|)[/mm] konvergent
> ist.
>  
> allerdings weiß ich nicht wie ich hier die monotonie
> nachweisen soll und ich weiß nicht wie ich hier zeigen
> soll, dass die folge gegen 0 konvergiert.
>  
> danke schonmal.
>  
> grüße
>  ali

Hallo,
[mm] \bruch{(n+1)^{n-1}}{(-n)^{n}}=\bruch{(n+1)^{n-1}}{(-n)^{n-1}}*\bruch{1}{-n}=(-1)^{n-1}*\bruch{(n+1)^{n-1}}{n^{n-1}}*\bruch{1}{-n}=(-1)^{n-1}*(\bruch{n+1}{n})^{n-1}*\bruch{1}{-n}[/mm]
Das geht irgendwie gegen [mm]\pm\frac{e}{n}[/mm].
Gruß ABAKUS



Bezug
                
Bezug
Leibniz Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 12.01.2013
Autor: piriyaie

danke abakus.

aber ich verstehe deine rechenschritte nicht so ganz. vor allem verstehe ich nicht wie ich da selbst drauf kommen soll und der klausur...

kann mir jemand eine einfachere antwort geben und mir erklären wie ich in der klausur bei solch einer aufgabe vorgehen soll?

danke schonmmal.

grüße
ali

Bezug
                        
Bezug
Leibniz Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Sa 12.01.2013
Autor: leduart

Hallo
du hast im Z hoch (n-1) im N hoch n
also es ist einfacher wenn oben und unten der gleiche exponent stehen. dafuer 2 Wege:
a)1/n ausklammern und den Rest hoch n, der Wegim letzten post
oder mit (1+n) erweitern, dann hast du [mm] (\bruch{1+n}{n})^n*\bruch{1}{n+1} [/mm]
in beiden Faellen kann man sehen,dass es eine Nullfolge ist.
und vor ner Klausur hat man ja ne Menge derartige Dinge geuebt und alle solche Tricks verinnerlicht!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]