matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenLeibniz Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - Leibniz Formel
Leibniz Formel < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibniz Formel: Verständnis
Status: (Frage) beantwortet Status 
Datum: 13:36 Sa 11.08.2012
Autor: EvelynSnowley2311

Huhu zusammen ;)

Ich versuch grade die Leibniz Formel zu verstehen mir ist die Summenschreibweise ein Rätsel. Ich habe mir mal ein Beispiel rausgesucht, an dass ich das verstehen möchte, und zwar

https://vorhilfe.de/forum/Determinanten/t90542?mrsessionid=b54635b6eb6d7667edf264be5f26a2f304ee31b9


betrachte ich die Matrix

[mm] \pmat{ 1 & 2 \\ 3 & 4 } [/mm]

Ich verstehe das mit dem Signum hier nur halbwegs. Ich habe das Signum schonmal früher berechnet . Da habe ich z.b.

[mm] \pmat{ 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 } [/mm]
gehabt und dann ist man so vorgegangen, dass man geguckt hat in der zweiten zeile wie die zahlen größer bzw kleiner werden.. Also

da 3 > 2 und 4 > 2 ist, gibt es 2 Fehlstände und das Signum wäre [mm] (-1)^2 [/mm] also pos.

Jetzt weiß ich nicht wie ich das hier mache. Wieso betrachtet man zunächst

[mm] \pmat{ 1 & 2 \\ 1& 2} [/mm] und [mm] \pmat{ 1 & 2 \\2& 1} [/mm]  Woher kamen  diese Matrizen?


Lg,

Eve

        
Bezug
Leibniz Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Sa 11.08.2012
Autor: dennis2

Hallo, Evelyn!

Da man da gerne mal in Verwirrung gerät, es aber wichtig ist, dass man das Prinzip grundsätzlich verstanden hat, mache ich es mal ein bisschen ausführlicher.

Man betrachtet also die Matrix

[mm] $M=\left(m_{ij}\right)_{1\leq i,j\leq 2}=\begin{pmatrix}1 & 2\\ 3 & 4\end{pmatrix}. [/mm]

Die Leibnizformel besagt nun

[mm] $\operatorname{det}(M)=\sum\limits_{\pi\in S_2}\operatorname{sig}(\pi)m_{1,\pi(1)}\cdot m_{2,\pi(2)}$ [/mm]

[mm] $S_2$ [/mm] ist die Menge aller Permutationen der Menge [mm] $\left\{1,2\right\}$ [/mm] und wird auch als symmetrische Gruppe bezeichnet.

Du musst also erstmal alle Permutationen der Menge [mm] $\left\{1,2\right\}$ [/mm] herausfinden. Das ist ja in diesem Fall nicht besonders schwer:

[mm] $\operatorname{card} S_2=2!=2$, [/mm] nämlich

[mm] $\pi_1=\begin{pmatrix}1 & 2\\1 & 2\end{pmatrix}$ [/mm] bzw. in Zykelschreibweise [mm] $\pi_1=(1)(2)\in S_2$ [/mm] sowie

[mm] $\pi_2=\begin{pmatrix}1 & 2\\2 &1\end{pmatrix}$ [/mm] bzw. [mm] $\pi_2=(12)$\in S_2$ [/mm]

In dem von Dir verlinkten Beitrag wurde die Matrix-Schreibweise für die Permutationen verwendet. Ich persönlich bevorzuge die Zykelschreibweise, aber das ist letztlich eine reine Geschmackssache.

Damit konkretisiert sich obige Formel zu:

[mm] $\operatorname{det}(M)=\operatorname{sig}(\pi_1)\cdot \underbrace{m_{1,\pi_1(1)}}_{=1}\cdot \underbrace{m_{2,\pi_1(2)}}_{=4}+\operatorname{sig}(\pi_2)\cdot \underbrace{m_{1,\pi_2(1)}}_{=2}\cdot \underbrace{m_{2,\pi_2(2)}}_{=3}$ [/mm]


Jetzt müssen bloß noch [mm] $\operatorname{sig}(\pi_1)$ [/mm] und [mm] $\operatorname{sig}(\pi_2)$ [/mm] bestimmt werden.


Dazu ermittelt man die Fehlstände.

Du musst Dir dazu, wie Du schon sagst, alle Paare $(i,j)$ mit $i<j$ und [mm] $i,j\in\left\{1,2\right\}$ [/mm] anschauen (hier also nur das Paar $(1,2)$) und dann gucken, ob [mm] $\pi_1(1)<\pi_1(2)$ [/mm] bzw. [mm] $\pi_2(1)<\pi_2(2)$. [/mm] Wenn die Anzahl der "Neins" gerade ist, handelt es sich um eine gerade Permutation und das Signum ist 1.



Hier hat man:

[mm] $\pi_1(1)=1<\pi_1(2)=2$ [/mm] und damit hat man 0 Fehlstande, also ist [mm] $\operatorname{sig}(\pi_1)=1$. [/mm]


[mm] $\pi_2(1)=2>\pi_2(2)=1$, [/mm] also hat man 1 Fehlstand und damit [mm] $\operatorname{sig}(\pi_2)=-1$ [/mm]


Das oben eingesetzt ergibt [mm] $\operatorname{det}(M)=-2$. [/mm]




Viele Grüße


Dennis

Bezug
                
Bezug
Leibniz Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 So 12.08.2012
Autor: EvelynSnowley2311

Wunderbar ich danke dir! Ich habs verstanden  und mir ist auch klar, warum diese berechnung der Determinante für große Matrizen unglücklich ist, da man ja bei nxn Matrizen n! Anordnungen betrachten müsste!



Bezug
                        
Bezug
Leibniz Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 So 12.08.2012
Autor: dennis2

Bitte, gerne. :-)

Ich freue mich immer, wenn ich hier auch mal helfen kann.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]