Leibnitz-Kriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:58 Mi 25.07.2007 | Autor: | arena |
Hallo zusammen,
Ich versuche gerade die Reihe
[mm] (-1)^n * \bruch {2^n}{3^{n+1}} [/mm]
auf Konvergenz zu überprüfen und scheitere daran zu zeigen, dass
[mm] \bruch {2^n}{3^{n+1}} [/mm]
monoton fällt.
Danke für eure Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Hallo zusammen,
>
> Ich versuche gerade die Reihe
> [mm](-1)^n * \bruch {2^n}{3^{n+1}}[/mm]
> auf Konvergenz zu
> überprüfen und scheitere daran zu zeigen, dass
> [mm]\bruch {2^n}{3^{n+1}}[/mm]
> monoton fällt.
Wieso sollte dies so schwierig sein? - Es ist doch [mm] $\frac{2^n}{3^{n+1}}=\frac{1}{3}\cdot\left(\frac{2}{3}\right)^n$. [/mm] Der positive konstante Faktor [mm] $\frac{1}{3}$ [/mm] braucht Dich für den Beweis nicht zu kümmern, und dass [mm] $\left(\frac{2}{3}\right)^n$ [/mm] monoton fallend ist, sollte relativ leicht zu zeigen sein: schliesslich ist [mm] $\left(\frac{2}{3}\right)^{n+1}=\frac{2}{3}\cdot \left(\frac{2}{3}\right)^n$
[/mm]
Nebenbei bemerkt: Es scheint, dass Du eine im wesentlichen (d.h. bis auf den harmlosen konstanten Faktor [mm] $\frac{1}{3}$) [/mm] geometrische Reihe als alternierende Reihe auffassen und dann aufgrund des Leibniz-Kriteriums als konvergent nachweisen möchtest. Dies ist zwar im Prinzip in Ordnung, zeigt aber, dass Du mit der Leibniz-Kanone ganz unnötig nach einem geometrischen Spatzen zu schiessen versuchst.
|
|
|
|