Lebesgue Maß < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:58 So 30.12.2007 | Autor: | jumape |
Aufgabe | Berechnen Sie [mm] \lambda [/mm] (T) für:
T={(x,y,z);10 [mm] \wurzel{x^2+y^2} \le [/mm] (35-z)(5+ [mm] arctan(tan(\pi(\bruch{1}{2} [/mm] - [mm] \bruch{z}{10})))) [/mm] und [mm] z\ge0} [/mm] |
Das ist eine Nummer zu groß für mich. Erstmal die Frage: Ich darf wahrscheinlich nicht tan und arctan einfach wegnehmen, oder? Da bekomme ich Probleme mit dem Definitionsbereich vom arctan, oder?
Macht es Sinn auf beiden Seiten zu quadrieren oder sollte ich das ganze gar nicht versuchen aufzulösen?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:20 So 30.12.2007 | Autor: | rainerS |
Hallo!
> Berechnen Sie [mm]\lambda[/mm] (T) für:
> [mm]T=\{(x,y,z);10 \wurzel{x^2+y^2} \le (35-z)(5+ \arctan(\tan(\pi(\bruch{1}{2} - \bruch{z}{10}))))\}[/mm] und [mm]z\ge0}[/mm]
> Das ist eine Nummer zu groß für mich. Erstmal die Frage:
> Ich darf wahrscheinlich nicht tan und arctan einfach
> wegnehmen, oder? Da bekomme ich Probleme mit dem
> Definitionsbereich vom arctan, oder?
Ich würde die Menge in Stücke zerlegen, und zwar so: wenn z von 0 bis 10 läuft, läuft [mm](\pi(\bruch{1}{2} - \bruch{z}{10}))[/mm] von [mm]\pi/2[/mm] nach [mm]-\pi/2[/mm], sodass
[mm] \arctan \tan (\pi(\bruch{1}{2} - \bruch{z}{10}))[/mm]
von [mm]\pi/2[/mm] nach [mm]-\pi/2[/mm] läuft.
Das gleiche gilt, wenn z von 10 bis 20 läuft, und so weiter. Schreib also die Menge T als abzählbare Vereinigung von Mengen [mm]T_n[/mm], in denen [mm]10*(n-1)\le z < 10*n[/mm].
> Macht es Sinn auf beiden Seiten zu quadrieren oder sollte
> ich das ganze gar nicht versuchen aufzulösen?
Besser nicht: [mm]\wurzel{x^2+y^2}[/mm] ist der Abstand des Punktes [mm](x,y,z)[/mm] von der z-Achse. Die Menge ist also rotationssymmetrisch um die z-Achse. Das kannst du ausnutzen.
Viele Grüße
Rainer
|
|
|
|