matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLaurentreihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Laurentreihe
Laurentreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihe: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:06 Fr 05.08.2011
Autor: tinakru

Aufgabe
Sei D = {z [mm] \in \IC [/mm] / 0<|z-1| < 2} und f: D--> [mm] \IC [/mm] definiert durch

f(z) = [mm] \bruch{1}{z^2 - 1} [/mm]

Begründen sie, warum f auf D durch eine eindeutig bestimmte Laurentreihe mit Entwicklungspunkt 1 dargestellt wird, geben sie diese Laurentreihe an und bestimmen sie das Residuum von f in 1.

Hallo miteinander,

ich habe mir schonmal ein paar Gedanken dazu gemacht.

Erstmal zum Definitionsbereich: Das ist ja das gleiche wie: 1<|z|<3


Die Laurentreihe ist eindeutig, weil f auf dem Kreisring mit innerem Radius 1 und äußerem Radius 3 holomorph ist. Stimmt das?


Dann zur Laurentreihe:
Erstmal Partialbruchzerlegung:

f(z) = [mm] \bruch{0,5}{z-1} [/mm] - [mm] \bruch{0,5}{z+1} [/mm]


So nun muss ich jeden dieser 2 Terme durch geschicktes ausklammern auf eine geometrische Reihe bringen, sodass die eine für |z| > 1 konvergiert und die andere für |z| < 3 konvergiert. Stimmt das?

mal zur ersten:

[mm] \bruch{0,5}{z-1} [/mm] =  [mm] \bruch{1}{2z-2} [/mm] =  [mm] \bruch{1}{2z} [/mm] *  [mm] \bruch{1}{1- \bruch{1}{z}} [/mm]

Nun geom. Reihe anwenden und man erhält:

[mm] \bruch{1}{2z} [/mm] * [mm] \summe_{k=1}^{\infty} (\bruch{1}{z})^k [/mm]

Diese Reihe konvergiert für |z| > 1

Bei dem zweiten Teil [mm] \bruch{0,5}{z+1} [/mm] bin ich ehrlich gesagt überfragt, weiß nicht wie ich das hinbiegen soll, dass die Reihe für |z|<3 konvergiert...


Bräuchte mal Feedback ob bis jetzt alles korrekt ist.

Danke :)

Grüße Tina

        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Fr 05.08.2011
Autor: felixf

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Moin Tina!

> Sei D = {z [mm]\in \IC[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

/ 0<|z-1| < 2} und f: D--> [mm]\IC[/mm] definiert

> durch
>  
> f(z) = [mm]\bruch{1}{z^2 - 1}[/mm]
>  
> Begründen sie, warum f auf D durch eine eindeutig
> bestimmte Laurentreihe mit Entwicklungspunkt 1 dargestellt
> wird, geben sie diese Laurentreihe an und bestimmen sie das
> Residuum von f in 1.
>  
> ich habe mir schonmal ein paar Gedanken dazu gemacht.
>  
> Erstmal zum Definitionsbereich: Das ist ja das gleiche wie:
> 1<|z|<3

Nein. Dein Definitionsbereich ist ein echter Kreisring (wobei das Loch in der Mitte Radius 1 hat), waehrend der Definitionsbereich $D$ eine punktierte Kreisscheibe ist. Es fehlt in der Mitte nur ein Punkt bei $z = 1$.

> Die Laurentreihe ist eindeutig, weil f auf dem Kreisring
> mit innerem Radius 1 und äußerem Radius 3 holomorph ist.
> Stimmt das?

Wenn du den Definitionsbereich anpasst, und ihr ein entsprechendes Resultat hattet, sollte es stimmen.

> Dann zur Laurentreihe:
>  Erstmal Partialbruchzerlegung:
>  
> f(z) = [mm]\bruch{0,5}{z-1}[/mm] - [mm]\bruch{0,5}{z+1}[/mm]

[ok]

Da du um $z = 1$ entwickeln willst, ist [mm] $\frac{0.5}{z - 1}$ [/mm] schonmal ein Teil der Laurententwicklung.

Du musst jetzt nur noch [mm] $\frac{1}{z + 1}$ [/mm] um $z = 1$ entwickeln. Wenn du [mm] $\frac{1}{z + 1} [/mm] = [mm] -\frac{1}{\frac{1 - z}{2} - 1}$ [/mm] schreibst sollte dir das aber gelingen.

LG Felix


Bezug
                
Bezug
Laurentreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Fr 05.08.2011
Autor: tinakru

Aufgabe
Wenn du [mm] $\frac{1}{z + 1} [/mm] = [mm] -\frac{1}{\frac{1 - z}{2} - 1}$ [/mm] schreibst sollte dir das aber gelingen.

Hallo,

danke schonmal für deine erste Hilfe :)


Bist du sicher, dass das das gleiche ist? Ich seh das nicht....Ist da nicht ein Fehler drinnen?

LG
Tina

Bezug
                        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Fr 05.08.2011
Autor: MathePower

Hallo tinakru,

> Wenn du [mm]\frac{1}{z + 1} = -\frac{1}{\frac{1 - z}{2} - 1}[/mm]
> schreibst sollte dir das aber gelingen.
>  Hallo,
>  
> danke schonmal für deine erste Hilfe :)
>
>
> Bist du sicher, dass das das gleiche ist? Ich seh das
> nicht....Ist da nicht ein Fehler drinnen?
>  


Ja, da fehlt noch ein Vorfaktor.

Die richtige Umformumg muß lauten:

[mm]\frac{1}{z + 1} = \red{\bruch{1}{2}}*\left(-\frac{1}{\frac{1 - z}{2} - 1}\right)[/mm]


> LG
>  Tina


Gruss
MathePower

Bezug
                                
Bezug
Laurentreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:13 Fr 05.08.2011
Autor: felixf

Moin MathePower,

> Ja, da fehlt noch ein Vorfaktor.
>  
> Die richtige Umformumg muß lauten:

danke fuer die Korrektur :-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]