matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLaurentreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Laurentreihe
Laurentreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurentreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Fr 09.01.2009
Autor: cauchy

Aufgabe
Bestimmen Sie die Laurentreihe der Funktion

[mm] f(z)=\bruch{1}{1-z^2}+\bruch{1}{3-z} [/mm]

a) im Kreisring 1<|z|<3
b) im Kreisring 1<|z-2|<3
c) um den Entwicklungspunkt [mm] z_0=1, [/mm] die im Punkt 1+3i konvergiert.

Liebes Matheraum-Team,

meine Frage bezieht sich auf die a) (bei b) und c) bin ich noch nicht...)
Also: Mit [mm] \bruch{1}{3-z} [/mm] habe ich folgendes gemacht:

[mm] \bruch{1}{3-z}=\bruch{1}{3(1-\bruch{z}{3})}=\bruch{1}{3}\sum_{n=0}^{\infty}{(\bruch{z}{3})^n} [/mm] (geometrische Reihe)
Das ist doch richtig, oder?

Nun bin ich mir nicht sicher, wie ich mit [mm] \bruch{1}{1-z^2} [/mm] verfahren muss. Muss ich eine Partialbruchzerlegung machen? (Hab ich schon gemacht, das wäre nämlich [mm] \bruch{1}{2(1-z)}+\bruch{1}{2(1+z)}, [/mm] da kam ich jedoch bis jetzt nicht weiter) oder ist [mm] \bruch{1}{1-z^2} [/mm] bereits der Grenzwert einer bekannten Reihe (was ich leider nicht sehe...)

Vielen Dank, cauchy


        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Fr 09.01.2009
Autor: fred97

Für |z|>1 ist

[mm] \bruch{1}{1-z^2} [/mm] = [mm] \bruch{1}{z^2}*\bruch{1}{1/z^2 - 1} [/mm] = [mm] -\bruch{1}{z^2}*\bruch{1}{1-1/z^2} [/mm] = [mm] -\bruch{1}{z^2}\summe_{n=0}^{\infty}\bruch{1}{z^{2n}} [/mm] = [mm] -\summe_{n=0}^{\infty}\bruch{1}{z^{2n+2}} [/mm]


FRED

Bezug
                
Bezug
Laurentreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Sa 10.01.2009
Autor: cauchy

Oh, das sieht ja eigentlich ganz simpel aus... danke, wär ich nicht drauf gekommen!

Bezug
                
Bezug
Laurentreihe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:05 Sa 10.01.2009
Autor: cauchy

ok, meine Lösung lautet:

[mm] f(z)=\sum_{n=-\infty}^{-1}{z^{2n}}+\sum_{n=0}^{\infty}{\bruch{z^n}{3^{n+1}}} [/mm]

Hoffe, das ist korrekt.

Ja und nun zu der (b), das kann ja nicht so anders sein!

Meine "Intuition" sagt mir, dass mir, dass die Lösung b sein könnte:

[mm] f(z)=\sum_{n=-\infty}^{-1}{z^{2n}}+\sum_{n=-\infty}^{-1}{\bruch{3^n}{z^{n-1}}} [/mm]

bzw. das könnte man jetzt noch zusammenfassen....

Bezug
                        
Bezug
Laurentreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 So 11.01.2009
Autor: fred97


> ok, meine Lösung lautet:
>  
> [mm]f(z)=\sum_{n=-\infty}^{-1}{z^{2n}}+\sum_{n=0}^{\infty}{\bruch{z^n}{3^{n+1}}}[/mm]
>  
> Hoffe, das ist korrekt.


Das ist es


>  
> Ja und nun zu der (b), das kann ja nicht so anders sein!
>  
> Meine "Intuition" sagt mir, dass mir, dass die Lösung b
> sein könnte:
>  
> [mm]f(z)=\sum_{n=-\infty}^{-1}{z^{2n}}+\sum_{n=-\infty}^{-1}{\bruch{3^n}{z^{n-1}}}[/mm]
>  


Das ist falsch ! Der Entwicklungspunkt ist [mm] z_0 [/mm] = 2


FRED



> bzw. das könnte man jetzt noch zusammenfassen....


Bezug
                                
Bezug
Laurentreihe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:10 So 11.01.2009
Autor: cauchy


> > Ja und nun zu der (b), das kann ja nicht so anders sein!
>  >  
> > Meine "Intuition" sagt mir, dass mir, dass die Lösung b
> > sein könnte:
> >
> [mm]f(z)=\sum_{n=-\infty}^{-1}{z^{2n}}+\sum_{n=-\infty}^{-1}{\bruch{3^n}{z^{n-1}}}[/mm]
>  >  
>
> Das ist falsch ! Der Entwicklungspunkt ist [mm]z_0[/mm] = 2
>  

Ok, da liegt auch mein Fehler. Bei der (a) war [mm] z_0=0 [/mm] der Entwicklungspunkt und nun ist [mm] z_0=2. [/mm] Wie muss ich denn dann meinen Ansatz verändern?

Bezug
                                        
Bezug
Laurentreihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 16.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]