matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTransformationenLaplace Transformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Transformationen" - Laplace Transformation
Laplace Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Mi 06.04.2011
Autor: stevarino

Aufgabe
u(t)     0          t<0
         sin(t)     0<= t <=2 pi
         0          t> 2 pi
[mm]\ddot{y}(t)+\dot{y}(t)= 2*u(t)[/mm]

Geben Sie die Laplace-Transformierte des Eingangssignal u(t)
Berechnen Sie die Ausgangsfunktion y(t)
[mm][/mm]


bräuchte eure Hilfe :)

Hab mir das mit dem Eingangssignal so vorgestellt
[mm]\sigma(t)*sin(t)[/mm] erzeugt mir einen Signal das für t<0 u(t)=0 und für 0<t< infinity einen Sinus ergibt.
Um für t> 2pi  u(t)=0 zu bekommen subtrahiert man einen Sinus der mit einer Sprungfunktion multipiziert wird die um 2pi verschoben ist also
[mm]\sigma(t-2\pi)*sin(t)[/mm]
[mm]u(t)=\sigma(t)*sin(t)-\sigma(t-2\pi)*sin(t)[/mm]

Stimmt das so bis jetzt???

lg Stevo


        
Bezug
Laplace Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Mi 06.04.2011
Autor: fred97

Die Laplacetransformierte von u erhältst Du doch ganz einfach über

      


    [mm] $\mathcal{L} \left\{u\right\}(s) =\int_{0}^{\infty} \mathrm{e}^{-st} u(t)\,\mathrm{d}t= \int_{0}^{2 \pi} \mathrm{e}^{-st} \sin(t)\,\mathrm{d}t$ [/mm]

FRED

Bezug
                
Bezug
Laplace Transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Do 07.04.2011
Autor: stevarino


Hallo

Es soll mit Überlagerung gelöst werden :(

mit der Laplace formel
[mm]\integral_{0}^{2\pi}{e^{-s*t}*sin(t) dt}=\bruch{1}{s^{2}+1}-e^{-2*\pi*s}*\bruch{1}{s^{2}+1}[/mm]

mit meinem Ansatz
[mm]u(t)=\sigma(t)\cdot{}sin(t)-\sigma(t-2\pi)\cdot{}sin(t)=\bruch{1}{s}*\bruch{1}{s^{2}+1}-\bruch{1}{s}*e^{-2*\pi*s}*\bruch{1}{s^{2}+1}[/mm]
also ist mein Ansatz falsch aber warum??? Jemand einen Tipp dazu??

lg Stevo


Bezug
                        
Bezug
Laplace Transformation: Verschiebung
Status: (Antwort) fertig Status 
Datum: 18:49 Do 07.04.2011
Autor: Infinit

Hallo Stevo,
die Laplacetransformation ist sowieso nur für positive t definiert, Deine Schreibweise mit der Sprungfunktion ist also richtig, aber Du musst auch die richtigen Korrespondenzen nachschlagen. Deine Laplace-Transfomierte für den Sinus gilt nur für positive t, zu
[mm] \sigma (t) \cdot \sin (\omega t)[/mm] gehört
[mm] \bruch{\omega}{s^2 +\omega^2} [/mm]

Was Dir wohl hier langt, ist die Anwendung der einzelnen Laplace-Regeln, hier ist es der Verschiebungssatz für eine Zeitfunktion.
Zu
[mm] f(t-t_0) \cdot \sigma (t-t_0) [/mm] gehört die Laplace-Transformierte
[mm] e^{-st_0} F(s) [/mm]
Viele Grüße,
Infinit



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]