matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisLaplace-Operator kompakt?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Laplace-Operator kompakt?
Laplace-Operator kompakt? < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Operator kompakt?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:16 Do 20.11.2008
Autor: Denny22

Aufgabe
Sei

[mm] $-\triangle:L^2(\Omega)\supset\mathcal{D}(-\triangle)=H^2(\Omega)\cap H_0^1(\Omega)\longrightarrow L^2(\Omega)$ [/mm]

der negative Laplace-Operator auf [mm] $L^2(\Omega)$ [/mm] und [mm] $\Omega\subset\IR^n$ [/mm] ein Gebiet mit glattem Rand und [mm] $n\in\IN$. [/mm]

Hallo an alle Funktionalanalytiker,

ich wüsste gerne, ob der Laplace-Operator ein kompakter Operator ist.
Denn ich weiß nicht genau, welchen Spektralsatz ich anwenden muss, der mir garantiert, dass es eine Orthonormalbasis von [mm] $L^2(\Omega)$ [/mm] gibt.
Da es so viele Spektralsätze gibt, bin ich völlig verwirrt, welchen ich nun anwenden muss: Spektralsatz für

- kompakte Operatoren
- kompakte selbstadjungierte Operatoren
- beschränkte Operatoren
- unbeschränkte Operatoren

Bitte helft mir auf die Sprünge.

Danke & Gruß

        
Bezug
Laplace-Operator kompakt?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:32 Mo 24.11.2008
Autor: Denny22

Wie es aussieht, kann mir bei dieser Frage niemand helfen. Hat jemand vielleicht eine Idee, wie ich Selbstadjungiertheit auf [mm] $L^2(\Omega)$ [/mm] zeigen kann?

Gruß

Bezug
                
Bezug
Laplace-Operator kompakt?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 So 30.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Laplace-Operator kompakt?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:21 Di 25.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]