matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisLandau-Symbole
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Landau-Symbole
Landau-Symbole < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Landau-Symbole: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 So 15.05.2005
Autor: ThomasK

Hallo.

Ich habe hier eine Aufgabe:

(1 + [mm] x)^{n} [/mm] = 1 + nx + o(x), wenn x [mm] \to [/mm] 0.

Unsere Definition lautet:
A = { [mm] a_{n} [/mm] }, B = { [mm] b_{n} [/mm] }.
Folge A ist "Klein-o" von B, wenn { [mm] a_{n}/ b_{n} [/mm] } eine
Nullfolge ist

Also heißt das doch [mm] a_{n} [/mm] = (1 + [mm] x)^{n} [/mm]  und
[mm] b_{n} [/mm] = 1 + nx + o(x),
es heißt doch aber [mm] a_{n} \in [/mm] o( [mm] b_{n} [/mm] ), wäre [mm] b_{n} [/mm] = x????

[mm] \limes_{x\rightarrow 0} a_{n}/ b_{n} [/mm] =
[mm] \limes_{x\rightarrow 0} [/mm]  (1 + [mm] x)^{n}/ [/mm] (1 + nx + o(x)) ,
wenn x gegen null geht, heißt das doch 1/1, also ist der lim [mm] a_{n} [/mm] = 1, also ist es keine nullfolge und somit stimmt das nicht,bzw. stimmt das nicht was ich da gerechnet habe...

        
Bezug
Landau-Symbole: Re: Landau-Symbole
Status: (Antwort) fertig Status 
Datum: 22:31 So 15.05.2005
Autor: logarithmus

Hallo ThomasK!

Zunächst etwas zum Landau Symbol &omicron - Klein-oh:
Seien f,g: D [mm] \to \IR [/mm] zwei auf der Teilmenge D [mm] \subset \IR [/mm] definierte Funktionen und [mm] x_0 [/mm] ein Berührpunkt von D. Dann schreibt man f(x) = &omicron(g(x)) für x [mm] \to x_0, [/mm] x [mm] \in [/mm] D, falls zu jedem [mm] \epsilon [/mm] > 0 ein [mm] \delta [/mm] > 0 existiert, so dass |f(x)| [mm] \le \epsilon [/mm] |g(x)|   für alle x [mm] \in [/mm] D mit |x - [mm] x_0| [/mm] < [mm] \delta. [/mm] Falls g(x) [mm] \ne [/mm] 0 in D, ist dies wieder gleichbedeutend mit [mm] \lim_{D\ \ni \ x \to x_0}\bruch{f(x)}{g(x)} [/mm] = 0.

Zur Aufgabe:
Du hast [mm] a_n [/mm] = [mm] (1+x)^n [/mm] und [mm] b_n [/mm] = 1+nx+&omicron(x) angenommen.
In diesem Fall gilt: [mm] a_n(x) [/mm] = [mm] b_n(x) [/mm] für x [mm] \to [/mm] 0 (nach Aufgabenstellung).
Setze jedoch [mm] a_n [/mm] = [mm] (1+x)^n [/mm] -(1+nx), [mm] b_n [/mm] = x, und vergleiche mit der Aufgabenstellung, so siehst du, dass [mm] a_n [/mm] = [mm] o(b_n) [/mm] für x [mm] \to [/mm] 0.
Dann gilt:
[mm] \lim_{x \ \to \ 0}a_n(x) [/mm] = [mm] \lim_{x \ \to \ 0}((1+x)^n [/mm] -(1+nx))
        = [mm] \lim_{x \ \to \ 0}(( \sum_{k=0}^{n}{n \choose k}1^{n-k}\cdot x^k) [/mm] - (1+nx))
        = [mm] \lim_{x \ \to \ 0}( [/mm] 1+nx+ {n [mm] \\ 2}x^2+...+{n \choose n-2}x^{n-2}+nx^{n-1}+x^n)-(1+nx)) [/mm]
        = [mm] \lim_{x \ \to \ 0}\sum_{k=2}^{n}{n \choose k}x^{n-k} [/mm] = 0
[mm] \Rightarrow \lim_{x \ \to \ 0}a_n(n) [/mm] = 0.
Also ist [mm] a_n [/mm] tatsächlich eine Nullfolge für x [mm] \to [/mm] o.

Ich hoffe deine Frage ist beantwortet.
gruss
logarithmus

Bezug
                
Bezug
Landau-Symbole: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:48 Mo 16.05.2005
Autor: ThomasK

Eine Frage hab ich da noch.

man muss doch den  [mm] \limes_{n\rightarrow 0}a_{n}/b_{n} [/mm] berechnen, dann würde man [mm] \limes_{n\rightarrow 0} [/mm] 0/x bekommen, also [mm] \limes_{n\rightarrow 0} [/mm] 0/0 und das ist ja nicht definiert....

Warum hast du aber nur den Limes von [mm] a_{n} [/mm] berechnet?

Bezug
        
Bezug
Landau-Symbole: Re: Fortsetzung+Korrektur
Status: (Antwort) fertig Status 
Datum: 14:07 Mo 16.05.2005
Autor: logarithmus

Hallo.

Mein Beitrag von vorhin, erweitert und Schreibfehler korrigiert:
Du hast geschrieben:
"... wenn x gegen null geht, heißt das doch 1/1, also ist der lim $ [mm] a_{n} [/mm] $ = 1, also ist es keine nullfolge und somit stimmt das nicht,bzw. stimmt das nicht was ich da gerechnet habe... "
Setze [mm] a_n [/mm] = [mm] (1+x)^n [/mm] -(1+nx), [mm] b_n [/mm] = x, und vergleiche mit der Aufgabenstellung, so siehst du, dass [mm] a_n [/mm] = [mm] o(b_n) [/mm] für x [mm] \to [/mm] 0.
Dann gilt:
[mm] \lim_{x \ \to \ 0}a_n(x) [/mm] = [mm] \lim_{x \ \to \ 0}((1+x)^n [/mm] -(1+nx))
        = [mm] \lim_{x \ \to \ 0}(( \sum_{k=0}^{n}{n \choose k}1^{n-k}\cdot x^k) [/mm] - (1+nx))
        = [mm] \lim_{x \ \to \ 0}( [/mm] 1+nx+\ [mm] {n\choose 2}x^2+...+{n \choose n-2}x^{n-2}+nx^{n-1}+x^n)-(1+nx)) [/mm]
        = [mm] \lim_{x \ \to \ 0}\sum_{k=2}^{n}{n \choose k}x^{n-k} [/mm] = 0
[mm] \Rightarrow \lim_{x \ \to \ 0}a_n(x) [/mm] = 0.
Also ist [mm] a_n [/mm] tatsächlich eine Nullfolge für x [mm] \to [/mm] o.
Ich habe diesen Limes berechnet, um zu zeigen, dass [mm] a_n(x) [/mm] eine Nullfolge für x [mm] \to [/mm] 0 ist.


"... man muss doch den  $ [mm] \limes_{n\rightarrow 0}a_{n}/b_{n} [/mm] $ berechnen, dann würde man $ [mm] \limes_{n\rightarrow 0} [/mm] $ 0/x bekommen, also $ [mm] \limes_{n\rightarrow 0} [/mm] $ 0/0 und das ist ja nicht definiert.... "
Jetzt rechnen wir [mm] \lim_{x \ \to \ 0}\bruch{a_n}{b_n}: [/mm]
[mm] \lim_{x \ \to \ 0}\bruch{a_n}{b_n} [/mm] = [mm] \lim_{x \ \to \ 0}\bruch{\sum_{k=2}^{n} ( {n \choose k} ( x^(n-k) ) }{x} [/mm]
       = [mm] \lim_{x \ \to \ 0}\bruch{{n\choose 2}x^2+...+{n \choose n-2}(x^(n-2))+n(x^(n-1))+x^n}{x} [/mm] (Wir können kürzen, bevor wir den Grenübergang betrachten)
       = [mm] \lim_{x \ \to \ 0}({n\choose 2}x^1+...+{n \choose n-2}(x^{n-3})+n(x^{n-2})+(1x^{n-1})) [/mm] (definiert, da Nenner [mm] \ne [/mm] 0)
       = 0.

Gruss,
logarithmus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]