matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikLandau-Symbole
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Numerik" - Landau-Symbole
Landau-Symbole < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Landau-Symbole: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:31 So 27.04.2014
Autor: Arthaire

Aufgabe
a) Für welche n [mm] \in \IN [/mm] gilt [mm] f''(x)-\bruch{f(x-h)-2f(x)+f(x+h)}{h^2} [/mm] = [mm] O(h^n) [/mm] für h [mm] \to, [/mm] unter der Annahme, dass f [mm] \in C^3(\IR,\IR), ||f'''||<\infty. [/mm]
b) Sei [mm] a_{0}=1, a_{1}=1, a_{n+2}:= a_{n+1} [/mm] + [mm] a_{n} [/mm] für n [mm] \in \IN_{0}. [/mm] Bestimmen Sie möglichst alle [mm] \alpha, \beta \in \IR, [/mm] so dass [mm] a_{n} [/mm] = [mm] O(n^\alpha), a_{n} [/mm] = [mm] O(\beta^n) [/mm] für n [mm] \to \infty [/mm] gilt.

Hallo zusammen,

ich habe diese Frage noch in keinem anderen Forum gestellt.

Leider finde ich hier keinen Ansatz, da ich mit dem Symbol [mm] O(h^n) [/mm] nichts anfangen kann. Prinzipiell bedeutet O(h) ja, dass [mm] \limes_{x\rightarrow a}sup|\bruch{f(x)}{h(x)}| [/mm] < [mm] \infty. [/mm] Aber was passiert, wenn es nicht um O(h), sondern um [mm] O(h^n) [/mm] geht?

Das Gleiche ist bei Teilaufgabe b).

Danke im Voraus!

        
Bezug
Landau-Symbole: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 So 27.04.2014
Autor: DieAcht

Hallo Arthaire,


> a) Für welche n [mm]\in \IN[/mm] gilt
> [mm]f''(x)-\bruch{f(x-h)-2f(x)+f(x+h)}{h^2}[/mm] = [mm]O(h^n)[/mm] für h
> [mm]\to,[/mm] unter der Annahme, dass f [mm]\in C^3(\IR,\IR), ||f'''||<\infty.[/mm]

Gegen was geht denn [mm] $h\$? [/mm] Ich vermute

      [mm] $h\to [/mm] 0$.

Ich setze mal

      [mm] g(x):=f''(x)-\bruch{f(x-h)-2f(x)+f(x+h)}{h^2}. [/mm]

Deine Frage ist nun: Was bedeutet folgender Ausdruck:

      [mm] g(x)=\mathcal O(x^n) $(x\to [/mm] 0)$ mit [mm] n\in\IN [/mm]

Antwort in Worten:

      [mm] \frac{g(x)}{x^n} [/mm] ist in der Nähe von Null beschränkt!

Alles klar?


Gruß
DieAcht

Bezug
                
Bezug
Landau-Symbole: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 So 27.04.2014
Autor: Arthaire

Wenn ich ehrlich sein darf, dann nicht.
Den Bruch gegen null laufen lassen geht nicht, da der Zähler und der Nenner null würden. Und irgendwie komme ich danach nicht weiter.

Bezug
                        
Bezug
Landau-Symbole: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 So 27.04.2014
Autor: DieAcht


> Wenn ich ehrlich sein darf, dann nicht.
> Den Bruch gegen null laufen lassen geht nicht, da der
> Zähler und der Nenner null würden. Und irgendwie komme
> ich danach nicht weiter.

In solchen Fällen gibt es L'Hôpital. Das ist übrigens auch
der Grund für

      [mm] $f\in C^3(\IR,\IR)$. [/mm]

Ohne deinen Rechenweg kann ich dir auch nicht helfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]