matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenLagrange-Multiplikator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Lagrange-Multiplikator
Lagrange-Multiplikator < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange-Multiplikator: Beweis
Status: (Frage) beantwortet Status 
Datum: 14:03 So 12.08.2018
Autor: Takota

Hallo,

es geht um diesen Beweis:

Link:
https://www.yumpu.com/de/document/view/12117595/lagrange-multiplikatoren-satz-seien-g-rn-offen-f-c-1gr-g-

Seite 2, ganz unten, wo steht: " ...und die beiden letzten Gleichungen bedeuten:

[mm] $f'(x^0) [/mm] + [mm] \lambda^T g'(x^0) [/mm] = 0$"

Meine Argumentation, warum man aus den beiden Gleichungen auf die Gleichung [mm] $f'(x^0) [/mm] + [mm] \lambda^T g'(x^0) [/mm] = 0$ schließen kann ist folgende:

Da [mm] $x^0 [/mm] = [mm] (u^0,t^0) [/mm] ist und ich das in die Argumente von f und g einsetzte, dann kann man ja nicht mehr nach u oder t partiell ableiten.
Dann bleit als einzige Möglichkeit nur noch, das f und g nach [mm] x^0 [/mm] abgeleitet werden kann.

Gebt mir doch bitte an, wie ihr den Schluß interpretieren würdet?

LG
Takota

        
Bezug
Lagrange-Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Di 14.08.2018
Autor: meili

Hallo Takota,

> Hallo,
>  
> es geht um diesen Beweis:
>  
> Link:
>  
> https://www.yumpu.com/de/document/view/12117595/lagrange-multiplikatoren-satz-seien-g-rn-offen-f-c-1gr-g-
>
> Seite 2, ganz unten, wo steht: " ...und die beiden letzten
> Gleichungen bedeuten:
>  
> [mm]f'(x^0) + \lambda^T g'(x^0) = 0[/mm]"
>  
> Meine Argumentation, warum man aus den beiden Gleichungen
> auf die Gleichung [mm]f'(x^0) + \lambda^T g'(x^0) = 0[/mm]
> schließen kann ist folgende:
>  
> Da [mm]$x^0[/mm] = [mm](u^0,t^0)[/mm] ist und ich das in die Argumente von f
> und g einsetzte, dann kann man ja nicht mehr nach u oder t
> partiell ableiten.
>  Dann bleit als einzige Möglichkeit nur noch, das f und g
> nach [mm]x^0[/mm] abgeleitet werden kann.

In die existierenden Ableitungen $f'(x)$ und $g'(x)$ wird [mm] $x^0$ [/mm] eingesetzt.

>  
> Gebt mir doch bitte an, wie ihr den Schluß interpretieren
> würdet?

Die beiden Gleichungen sind Gleichungen für die beiden partiellen
Ableitungen von f und g.
Da f und g stetig differenzierbar sind und die partiellen Ableitungen
stetig sind, kann aus den partiellen Ableitungen
auf die Ableitung von f und g geschlossen werden.

Wenn man die beiden Gleichungen addiert und $ [mm] (u^0, t^0) [/mm] = [mm] x^0$ [/mm] einsetzt, erhält man:

$grad \ [mm] f(x^0) [/mm] + [mm] \summe_{i=1}^{m} \lambda_i [/mm] \ grad \ [mm] g_1(x^0) [/mm] = 0$

was die letzte Zeile des zu beweisenden Satzes ist.

>  
> LG
>  Takota

Gruß
meili

Bezug
                
Bezug
Lagrange-Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 14.08.2018
Autor: Takota

Hallo meili,

ich versuche das noch ein bischen aufzudrösseln was Du geschrieben hast.

(Ohne die Argumente [u^(t), t)], um Schreibaufwand zu sparen :-)):

[mm] $f_u [/mm] + [mm] \lambda^T g_t [/mm] = 0$
[mm] $g_u [/mm] + [mm] \lambda^T g_t [/mm] = 0$

Addition und Umformen ergibt:

[mm] $f_u+f_t [/mm] + [mm] \lambda^T [(g_u [/mm] + [mm] g_t)] [/mm] = 0$

Mit dem Satz:
Da alle partiellen Ableitungen von f und g existieren und stetig sind, ist auch f und g diff'bar.

[mm] $\Rightarrow f'(x^0) [/mm] + [mm] \lambda^T [/mm] g'(x0) = 0$

Was mir noch nicht ganz klar ist:

Die partiellen Ableitung sind [mm] $f_u+f_t$, [/mm] bzw., [mm] $g_u [/mm] + [mm] g_t$. [/mm]

Aber irgendwie fehlt da noch die innere Ableitung u'(t)?
Spielt die bei der Betrachtung hier keine Rolle?

Gruß
Takota


Bezug
                        
Bezug
Lagrange-Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Fr 17.08.2018
Autor: meili

Hallo Takota,


>  
> ich versuche das noch ein bischen aufzudrösseln was Du
> geschrieben hast.
>  
> (Ohne die Argumente [u^(t), t)], um Schreibaufwand zu
> sparen :-)):

Es wird nicht mehr $u(t)$ betrachtet (gebraucht, da im Beweis in der
Gleichung (*) $u ' [mm] (t^0)$ [/mm] ersetzt wurde durch $ [mm] -\left( g_u(u^0,t^0) \right) ^{-1}g(u^0, t^0)$ [/mm] ),
sondern $u = [mm] (x_1, \ldots, x_m)$ [/mm] und $t = [mm] (x_{m+1}, \ldots, x_n)$. [/mm]

>  
> [mm]f_u + \lambda^T g_t = 0[/mm]
>  [mm]g_u + \lambda^T g_t = 0[/mm]
>  
> Addition und Umformen ergibt:
>  
> [mm]f_u+f_t + \lambda^T [(g_u + g_t)] = 0[/mm]

[ok]

>  
> Mit dem Satz:
>  Da alle partiellen Ableitungen von f und g existieren und
> stetig sind, ist auch f und g diff'bar.
>  
> [mm]\Rightarrow f'(x^0) + \lambda^T g'(x^0) = 0[/mm]
>  
> Was mir noch nicht ganz klar ist:
>  
> Die partiellen Ableitung sind [mm]f_u+f_t[/mm], bzw., [mm]g_u + g_t[/mm].

Die partiellen Ableitung sind [mm]f_u = \left( \bruch{\partial f}{\partial u_1}, \ldots, \bruch{\partial f}{\partial u_m}, 0, \ldots, 0 \right)[/mm] und  [mm] $f_t [/mm] = [mm] \left(0, \ldots, 0, \bruch{\partial f}{\partial t_{m+1}}, \ldots, \bruch{\partial f}{\partial t_n} \right)$. [/mm]

>  
> Aber irgendwie fehlt da noch die innere Ableitung u'(t)?
> Spielt die bei der Betrachtung hier keine Rolle?

Es wird nicht mehr eine Funktion $u(t)$ betrachtet, sondern nur noch die
Zerlegung von $x$ in $u$ und $t$.

>  
> Gruß
>  Takota
>  

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]