matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLagebeziehung-Ebenen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Lagebeziehung-Ebenen
Lagebeziehung-Ebenen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagebeziehung-Ebenen: Parameterform
Status: (Frage) beantwortet Status 
Datum: 23:43 Fr 11.11.2011
Autor: theresetom

Aufgabe
Ich hab zwei ebenen in parameterfom und die lagebeziehung will ich überprüfen und gegebenfalls die Schnittgerade ausrechnen.

Kann ich das auch in Paramterform tuhen oder muss ich in Normalform umrechnen?

[mm] \varepsilon_1 [/mm] = (3,1,4) + s * (1,1,1) + t * (-1,1,2)
[mm] \varepsilon_2 [/mm] = (-1,2,1) + k * (5,-1,-4) + l * (0,2,3)

        
Bezug
Lagebeziehung-Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 Fr 11.11.2011
Autor: reverend

Hallo theresetom,

> Ich hab zwei ebenen in parameterfom und die lagebeziehung
> will ich überprüfen und gegebenfalls die Schnittgerade
> ausrechnen.
>  Kann ich das auch in Paramterform tuhen oder muss ich in
> Normalform umrechnen?
>  
> [mm]\varepsilon_1[/mm] = (3,1,4) + s * (1,1,1) + t * (-1,1,2)
>  [mm]\varepsilon_2[/mm] = (-1,2,1) + k * (5,-1,-4) + l * (0,2,3)

Du kannst das zwar auch in Parameterform tun, aber in der Normalform ist es bedeutend einfacher.

Letztlich geht es aber doch nur um die Ermittlung von Normalenvektoren. Für jede Ebene findet man einen über das Kreuzprodukt der beiden Richtungsvektoren. Der Richtungsvektor der Schnittgeraden ist dann wiederum das Kreuzprodukt der beiden Normalenvektoren der Ebenen.
Wenn also [mm] \vec{r} [/mm] der gesuchte Geraden-Richtungsvektor ist, dann heißt das hier:

[mm] \vec{r}=\left(\vektor{1\\1\\1}\times\vektor{-1\\1\\2}\right)\times\left(\vektor{5\\-1\\-4}\times\vektor{0\\2\\3}\right) [/mm]

Dann ggf. noch normieren.

Außerdem brauchst Du für die Gerade natürlich noch einen Aufpunkt, der also in beiden Ebenen liegen muss.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]