matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenLage und Formel von Gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Lage und Formel von Gerade
Lage und Formel von Gerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lage und Formel von Gerade: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:03 Sa 17.02.2007
Autor: Marion_

Aufgabe
Die Gerade g durch den Punkt P(0/-5/2) ist orthogonal zur Ebene E mit der Gleichung [mm] 2x_1+5x_2+x_3=37. [/mm] Bestimmen Sie eine Gleichung von g.

Hallo,

ich habe g mal bestimmt, bin mir aber nicht sicher, ob das so stimmen kann. Würde mich freuen, wenn sich jemand das mal anschauen könnte. Vielen Dank.

Meine Lösung:

P(0/-5/2) ist der Stützvektor von g.
Bestimmung des Richtungsvektors:
Voraussetzung: muss senkrecht zu E sein ---> Normalenvektor = 0
[mm] \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} [/mm] * [mm] \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}= [/mm] 0  nummeriert: I
[mm] \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} [/mm] * [mm] \begin{pmatrix} 0 \\ -5 \\ 2 \end{pmatrix} [/mm] = 0 nummeriert: II

Setze: [mm] n_3= [/mm] 1
aus I folgt: [mm] 2n_1+5n_2+1= [/mm] 0--> [mm] n_1=-5/2n_2-1/2 [/mm]

aus II folgt: [mm] -5n_2+2= [/mm] 0 --> [mm] n_2= [/mm] 2/5

[mm] n_2 [/mm] in [mm] n_1 [/mm] einsetzen: [mm] n_1= [/mm] -5/2*2/5-1/2=-1,5
--> [mm] \vec n[/mm][mm] =\begin{pmatrix} -1,5 \\ 2/5 \\ 1 \end{pmatrix} [/mm]

--> g: [mm] \vec x[/mm]= [mm] \begin{pmatrix} 0 \\ -5 \\ 2 \end{pmatrix} [/mm] + s [mm] \begin{pmatrix} -1,5 \\ 2/5 \\ 1 \end{pmatrix} [/mm]




        
Bezug
Lage und Formel von Gerade: viel einfacher
Status: (Antwort) fertig Status 
Datum: 19:25 Sa 17.02.2007
Autor: Loddar

Hallo Marion!


Das stimmt leider nicht so. Und es geht auch viiieeel einfacher, denn der Normalenvektor der Ebene entspricht hier ja bereits dem Richtungsvektor der gesuchten Gerade.


Gruß
Loddar


Bezug
                
Bezug
Lage und Formel von Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Sa 17.02.2007
Autor: Marion_

hehe, Loddar,
vielen Dank für deine Hilfe. Solch einfache Aufgaben sind natürlich irgendwie doch immer die schwersten ;).
Gruß,
Marion.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]