matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVK 29: OberstufenmathematikLage Gerade-Gerade IV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "VK 29: Oberstufenmathematik" - Lage Gerade-Gerade IV
Lage Gerade-Gerade IV < VK 29: Oberstufe < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 29: Oberstufenmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lage Gerade-Gerade IV: anal. Geom. der Geraden
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 17:31 Di 30.12.2008
Autor: argl

Aufgabe

Prüfen Sie welche Lage die Gerade [mm] $g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}$ [/mm]  und die Gerade [mm] $h:\vec{x}= \vec{q} [/mm] + s * [mm] \vec{n}$ [/mm] zueinander haben !

a) [mm] $\vec{q} [/mm] = [mm] \vektor{1 \\ 0 \\ 3}$ $\vec{n} [/mm] = [mm] \vektor{2,5 \\ -10 \\ 5}$ [/mm]

b) [mm] $\vec{q} [/mm] = [mm] \vektor{-1 \\ 12 \\ -5}$ $\vec{n} [/mm] = [mm] \vektor{0,25 \\ -1 \\ 0,5}$ [/mm]

c) [mm] $\vec{q} [/mm] = [mm] \vektor{1 \\ 0 \\ -1}$ $\vec{n} [/mm] = [mm] \vektor{-1 \\ 8 \\ -2}$ [/mm]



        
Bezug
Lage Gerade-Gerade IV: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 22:12 Sa 25.04.2009
Autor: Schachschorsch56

[mm] a)g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2} h:\vec{x}=\vektor{1 \\ 0 \\ 3}+s\cdot\vektor{2.5 \\ 10 \\ 5} [/mm]

a)1. g und h parallel ?

Ja !, denn es gilt [mm] r\cdot\vektor{-1 \\ 4 \\ -2}= \vektor{2.5 \\ 10 \\ 5} [/mm] für r=-2.5

a)2. g und h identisch ?

Nein !, denn für die Gleichung [mm] \vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{1 \\ 0 \\ 3} [/mm] gibt es kein r, das das LGS erfüllt !

[mm] b)g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2} h:\vec{x}=\vektor{-1 \\ 12 \\ -5}+s\cdot\vektor{0.25 \\ -1 \\ 0.5} [/mm]

b)1. g und h parallel ?

Ja ! denn es gibt ein s=-4, das die Gleichung [mm] \vektor{-1 \\ 12 \\ -5}+s\cdot\vektor{0.25 \\ -1 \\ 0.5}=\vektor{-1 \\ 4 \\ -2} [/mm] erfüllt !

b)2. sind g und h identisch ?
Ja ! denn es gilt:

[mm] \vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{-1 \\ 12 \\ -5} [/mm] für r=3 und
[mm] \vektor{-1 \\ 12 \\ -5}+s\cdot\vektor{0.25 \\ -1 \\ 0.5}=\vektor{2 \\ 0 \\ 1} [/mm] für s=12

[mm] c)g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2} h:\vec{x}=\vektor{1 \\ 0 \\ -1}+s\cdot\vektor{-1 \\ 8 \\ -2} [/mm]

c)1. g und h parallel ?

Nein !, denn für die Gleichung [mm] r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{-1 \\ 8 \\ -2} [/mm] gibt es kein r, das das LGS erfüllt !

c)3. Gibt es einen Schnittpunkt der Geraden g und h ?

ich setze [mm] \vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{1 \\ 0 \\ -1}+s\cdot\vektor{-1 \\ 8 \\ -2} [/mm] und schreibe das LGS:

I 2 - r = 1 -s
II 4r = 8s  [mm] \Rightarrow [/mm] r=2s setze r in I und III ein
III 1 - 2r = -1 - 2s

I 2 - 2s = 1 -s [mm] \Rightarrow [/mm] s=1
III 1 - 4s = -1 - 2s [mm] \Rightarrow [/mm] s=1 [mm] \Rightarrow [/mm] r=2

es gibt also einen Schnittpunkt S. Ich setze s=1 in h und r=2 in g ein:

[mm] \overrightarrow{OS}=\vektor{1 \\ 0 \\ -1}+1\cdot\vektor{-1 \\ 8 \\ -2}=\vektor{0 \\ 8 \\ -3} [/mm] und
[mm] \overrightarrow{OS}=\vektor{2 \\ 0 \\ 1}+2\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{0 \\ 8 \\ -3} [/mm] stimmt überein, damit

haben wir als Schnittpunkt S (0|8|-3)

Schorsch

Bezug
                
Bezug
Lage Gerade-Gerade IV: alles okay!
Status: (Antwort) fertig Status 
Datum: 09:27 So 26.04.2009
Autor: Loddar

Hallo Schorsch!


Alles korrekt gelöst. [ok]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 29: Oberstufenmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]