matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS mit Parametern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - LGS mit Parametern
LGS mit Parametern < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS mit Parametern: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:01 Mi 20.02.2008
Autor: orbital

Aufgabe
Für welche Werte von a hat das LGS eine, keine bzw. unendlich viele Lösungen?
2x-ay+5z=a
-x+3y-2z=1
x+ y+4z=-3

Ich habe folgende Lösung:

1.Fall [mm] a\not=1,a\not=-3 [/mm]

L={ [mm] \bruch{6-8a}{-1+a};\bruch{-a-3}{-1+a};\bruch{2a+a}{-2+2a} [/mm] }

2. Fall a=1, a=-3  L={}

3. Fall a=-1 L={-4;1;-3}

Beim Einsetzen der Zahlen des 3. Falles in die Ursprungsgleichung
geht die Probe nicht auf. Kann mir irgendwer sagen, ob die Ergebnisse des 1. und 2. Falles ebenfalls falsch sind?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
LGS mit Parametern: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Mi 20.02.2008
Autor: steppenhahn

Also mit folgenden Umformungen komme ich auf andere Ergebnisse:

[mm] \pmat{2 & -a & 5 & | & a \\-1 & 3 & -2 & | & 1 \\ 1 & 1 & 4 & | & -3} [/mm]

2 * z2 + z1 --> z1
1 * z2 + z3 --> z3

[mm] \pmat{0 & 6-a & 1 & | & a+2 \\-1 & 3 & -2 & | & 1 \\ 0 & 4 & 2 & | & -2} [/mm]

z1 <--> z2
z2 <--> z3

[mm] \pmat{-1 & 3 & -2 & | & 1 \\ 0 & 4 & 2 & | & -2 \\ 0 & 6-a & 1 & | & a+2} [/mm]

z1 * (-1) --> z1
z2 / 4 --> z2

[mm] \pmat{1 & -3 & 2 & | & -1 \\ 0 & 1 & \bruch{1}{2} & | & -\bruch{1}{2} \\ 0 & 6-a & 1 & | & a+2} [/mm]

(-6)*z2 + z3 --> z3
3*z2 + z1 --> z1

[mm] \pmat{1 & 0 & \bruch{7}{2} & | & -\bruch{5}{2} \\ 0 & 1 & \bruch{1}{2} & | & -\bruch{1}{2} \\ 0 & -a & -2 & | & a+5} [/mm]

a*z2 +z3 --> z3

[mm] \pmat{1 & 0 & \bruch{7}{2} & | & -\bruch{5}{2} \\ 0 & 1 & \bruch{1}{2} & | & -\bruch{1}{2} \\ 0 & 0 & -2 + \bruch{1}{2}*a & | & a+5-\bruch{1}{2}*a} [/mm]

Umformen

[mm] \pmat{1 & 0 & \bruch{7}{2} & | & -\bruch{5}{2} \\ 0 & 1 & \bruch{1}{2} & | & -\bruch{1}{2} \\ 0 & 0 & \bruch{4-a}{2} & | & \bruch{a+10}{2}} [/mm]

z3 * 2 --> z3
z3 / (4-a) --> z3

[mm] \pmat{1 & 0 & \bruch{7}{2} & | & -\bruch{5}{2} \\ 0 & 1 & \bruch{1}{2} & | & -\bruch{1}{2} \\ 0 & 0 & 1 & | & \bruch{a+10}{a-4}} [/mm]

Du siehst: also schon die Lösung für z stimmt nicht mit deiner überein, denn hier aus der Matrix folgt

z = [mm] \bruch{a+10}{a-4} [/mm]

y = [mm] \bruch{-3-a}{a-4} [/mm]

x = [mm] \bruch{-6a-25}{a-4} [/mm]

Den einzigen Fall, den du extra überprüfen musst ist a = 4. Da wird das LGS aber nicht lösbar sein...

Bezug
                
Bezug
LGS mit Parametern: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Do 21.02.2008
Autor: orbital

Danke.

Hab auch gleich den Fehler in der ersten Rechenoperation bei mir gefunden.

Gruß
Oli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]