matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS in abhängigkeit von r
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - LGS in abhängigkeit von r
LGS in abhängigkeit von r < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS in abhängigkeit von r: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Sa 03.11.2007
Autor: molekular

Aufgabe
bestimmen sie unter verwendung des gaußschen verfahrens die lösungsmenge des folgenden gleichungssystems in abhängigkeit von dem parameter $r [mm] \in \IR$ [/mm]

$4x-y=ry$
$2x+y=rx$

salute zusammen!

hab mich mal an dieser aufgabe probiert aber ich bin mir sehr unsicher obs so stimmt. ich bräuchte sie unbedingt zu montag...wäre schön, wenn sich ihr jemand annehmen könnte [anbet]

LGS(G)

$ 4x-y=ry $
$ 2x+y=rx $

habe die zweite gleichung $ [mm] \cdot(-2) [/mm] $ genommen, zur ersten addiert und nach $ x $ aufgelöst

somit: $ [mm] x=\bruch{ry}{(6-r)} [/mm] $

eingesetzt in die erste gleichung, wobei dann allerdings $y$ entfällt.
komme somit auf eine quadratische gleichung von $r$

[mm] $0=r^2-r-6$ [/mm] für [mm] $r_1=3$ [/mm] und [mm] $r_2=-2$ [/mm]

bedeutet das nun,dass G für [mm] $r_1_2$ $\IL=\left\{ (x,y):x=y\in \IR \right\} [/mm] $ hat und/oder was ist für $ [mm] r\ne r_1_2 [/mm] $ ähmm, hab ich mich total vertüdelt???



        
Bezug
LGS in abhängigkeit von r: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Sa 03.11.2007
Autor: schachuzipus

Hallo molekular,

Forme zunächst das LGS um:

[mm] $\vmat{ &4x & -&y&=&ry \\ &2x & +&y&=&rx }$ [/mm] zu

[mm] $\vmat{ &4x & -&(1+r)y&=0 \\ &(2-r)x & +&y&=0 }$ [/mm]

Nun kannst du das -4fache der 2.Zeile zum (2-r)fachen [mm] (r\neq [/mm] 2) der 1.Zeile addieren und bekommst nach einigen Umformungen

[mm] $\vmat{ && &(r-3)(r+2)y&=0 \\ &(2-r)x & +&y&=0 }$ [/mm]

Hier kannst du nun die nötigen Fallunterscheidungen bzgl. $r$ machen

1.Fall: [mm] $r\neq [/mm] 3, [mm] r\neq [/mm] -2$

2.Fall: $r=3$

3.Fall: $r=-2$

Nun bestimme mal für diese 3 Fälle die jeweilige Lösungsmenge...

Da wir für die Umformungen $r=2$ rausnehmen mussten, um die Lösungsmenge unverändert zu lassen, musst du diesen Fall am Schluss noch kurz untersuchen.

Setze dazu $r=2$ in das LGS ein...



LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]