matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLGS aus Lösungsmenge bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - LGS aus Lösungsmenge bestimmen
LGS aus Lösungsmenge bestimmen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS aus Lösungsmenge bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Di 16.04.2013
Autor: JoeSunnex

Aufgabe
Seien $a = (1,5,7,2)$ und $U = [mm] \left<(0,1,1,1),(1,0,1,-1)\right> \subseteq \IR^4$. [/mm] Geben Sie ein LGS mit 4 Unbekannten und möglichst wenigen Gleichungen an, sodass der affine Teilraum $a + U$ genau die Lösungsmenge des LGS ist.

Hallo zusammen,

hänge gerade an jener Aufgabe und weiß nicht so recht weiter. Ich weiß, dass die Lösungsmenge $L(A,b) = [mm] \{(1,5,7,2)+\lambda(0,1,1,1)+\mu(1,0,1,-1) | \lambda,\mu \in \IR\}$ [/mm] ist, also eine Ebene.
Wie kann ich jetzt am einfachsten verfahren?

Grüße
Joe

        
Bezug
LGS aus Lösungsmenge bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Di 16.04.2013
Autor: angela.h.b.


> Seien [mm]a = (1,5,7,2)[/mm] und [mm]U = \left<(0,1,1,1),(1,0,1,-1)\right> \subseteq \IR^4[/mm].
> Geben Sie ein LGS mit 4 Unbekannten und möglichst wenigen
> Gleichungen an, sodass der affine Teilraum [mm]a + U[/mm] genau die
> Lösungsmenge des LGS ist.
> Hallo zusammen,

>

> hänge gerade an jener Aufgabe und weiß nicht so recht
> weiter. Ich weiß, dass die Lösungsmenge [mm]L(A,b) = \{(1,5,7,2)+\lambda(0,1,1,1)+\mu(1,0,1,-1) | \lambda,\mu \in \IR\}[/mm]
> ist, also eine Ebene.
> Wie kann ich jetzt am einfachsten verfahren?

Hallo,

eine Möglichkeit:

in dieser Ebene sind alle Punkte (x,y,z,t), welche man als

[mm] (x,y,z,t)=(1,5,7,2)+\lambda(0,1,1,1)+\mu(1,0,1,-1) [/mm] mit [mm] \lambda,\mu \in \IR\ [/mm]

schreiben kann.

Hieraus bekommst Du 4 Gleichungen.
Eliminiere [mm] \lambda [/mm] und [mm] \mu. [/mm] Übrig bleiben zwei Gleichungen, welche ein LGS bilden, dessen Lösungsmenge die angegebene Menge ist.

LG Angela

>

> Grüße
> Joe


Bezug
                
Bezug
LGS aus Lösungsmenge bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:25 Di 16.04.2013
Autor: JoeSunnex

Hallo Angela,

ich danke dir für den Ansatz, ich hätte noch eine Weile im Dunklen getappt :)
Ich habe jetzt statt $(x,y,z,t)$ lieber $(a,b,c,d)$ genommen, wegen der alphabetischen Anordnung.

Also man hätte:
[mm] $\begin{vmatrix} a = 1 + \mu\\ b = 5 + \lambda\\ c = 7+\lambda+\mu\\ d = 2+\lambda-\mu \end{vmatrix}$ [/mm]

Nun könnte man III - II und IV - II rechnen, man erhält die "neuen" Gleichungen $c-b = [mm] 2+\mu$ [/mm] (II) und $d-b = [mm] -3-\mu$ [/mm] (III) und danach noch II-I und III+I rechnen und man erhält insgesamt:

[mm] $\begin{vmatrix} -a-b+c=1\\ a-b+d=-2 \end{vmatrix}$ [/mm]

Nun lässt sich obiges Ergebnis durch freies Wählen von a und b reproduzieren, also sollte meine Rechnung stimmen :)

Grüße
Joe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]