matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLGS, 3 Gleichg. 5 Unbekannte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - LGS, 3 Gleichg. 5 Unbekannte
LGS, 3 Gleichg. 5 Unbekannte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS, 3 Gleichg. 5 Unbekannte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mi 26.10.2005
Autor: Charlotte

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Ich habe folgende Aufgabe, die ich bearbeiten kann, dessen Lösung mir jedoch eher falsch als richtig vorkommt, da die Lösung ellenlang ist.

Aufgabe: Man löse mittels Gauß-Algorithmus des folgende Gleichungssystem Aa(x) = b in Abhängigkeit von a E R.

Aa := [mm] \begin{pmatrix} 2 & 1 & a & 1 & 0 \\ 1 & 0 & 0 & a & -a \\ 0 & 2 & 1 & 0 & 0 \\ \end{pmatrix} [/mm]

b := [mm] \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} [/mm]

----------------------------------------------------------------

ich hab die Matrix Stufenform umgewandelt und bekomme raus (habs mit mehrern Leuten verglichen und gehe davon aus, dass es richtig ist):

Aa := [mm] \begin{pmatrix} 2 & 1 & a & 1 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & -2a+1 & 4a-2 & -4a \\ \end{pmatrix} [/mm]

mit b := [mm] \begin{pmatrix} 0 \\ 2 \\ 6 \end{pmatrix} [/mm]

da ich ja eine Matrix mit 3 Gleichung und 5 Unbekannten hab, hab ich  [mm] x_4 [/mm] = t gesetzt und [mm] x_5 [/mm] gleich s gesetzt.

[mm] x_3 [/mm] hab ich aus der 3. Gleichung, damit dann in die 2. Gleichung und mit dem Ergebnis dann in die 1. Gleichung, sodass ich [mm] x_1 [/mm] bis [mm] x_3 [/mm] ausrechnen konnte.

Hier meine Ergebnisse:

[mm] x_3 [/mm] = [mm]\bruch{6 - ( 4a - 2) t + 4 a s}{-2a+1}[/mm]

[mm] x_2 [/mm] = [mm]\bruch{2- 2a + (-2a+1) t + 2 a s}{-2a+1}[/mm]

[mm] x_1 [/mm] = [mm]\bruch{-2t - 2 + 4a + (1 + 2a)(-2a + 2as)}{-4a+2} [/mm]


(** Irgendwie klappt das mit dem Brüchen in der Vorschau nicht** :(
Hoffe, ihr könnt es dennoch erkennen?? Unterm Bruchstrich steht zweimal: -2a+1 und einmal -4a+2

Mir kommt das Ergebnis sehr, sehr komisch vor.

Stimmt mein Ergebnis?
Kann ich noch irgendwas zusammenfassen?

VIELEN - VIELEN DANK!!!

Liebe Grüße
Charlotte

        
Bezug
LGS, 3 Gleichg. 5 Unbekannte: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Do 27.10.2005
Autor: Britta82

Hi,

warum rechnest du soviel rum, du kannst doch einfach mit Zeilen und Spaltenvertauscheungen auf die Form:

[mm] \pmat{-a&a&1&0&0 \\ 0&1&2&1&0\\0&0&0&2&1} [/mm]
bringen, dann verändert sich b gar nicht und das ausrechnen wird ganz leicht.
Oder dürft ihr keine Spaltenvertauschungen machen?

LG

Britta

Bezug
                
Bezug
LGS, 3 Gleichg. 5 Unbekannte: Antwort auf Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Do 27.10.2005
Autor: Charlotte

Hallo Britta,

sieht toll aus die Matrix, doch leider hatten wir noch keine Spaltenvertauschungen, deshalb nehm ich mal stark an, dass wir die Aufgabe so auch nicht lösen sollen.... :(

Vll. ist das mit dem Spaltenvertauschungen ja aber auch so einfach, dass ich es dennoch mal probiere - ich werd mich mal dazu schlau machen.

Danke!

Sonst ist es wahrlich eine sch*** Rechnerei :( und von allen anderen, die die Aufgaben auch lösen müssen, hab ich leider auch noch nichts anderes gehört .....

Liebe Grüße
Charlotte

Bezug
                
Bezug
LGS, 3 Gleichg. 5 Unbekannte: Fehler in Antwort?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:05 Do 27.10.2005
Autor: Charlotte

Ich nochmal :)

ALso ich hab mich jetzt mal mit den Spaltenvertauschungen beschäftigt, und das ist ja echt simpel und vorallem LOGISCH :)

Aber.... ich glaube, dass es in der zweiten Zeile der Matrix in der letzen Spalte nicht 0 sondern a heissen muss.

LG Charlotte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]