matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesLGS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - LGS
LGS < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS: Lineare Gleichungssystem löse
Status: (Frage) beantwortet Status 
Datum: 00:17 Mo 22.04.2013
Autor: Titanium

Aufgabe
Lösen Sie das lineare Gleichungssystem
(3+5i) zi +(4- 7i) z2 = 10+ 9i
(2- 6i) z1 + (5-3i) z2 = 5 -i.

( Gesucht sind zwei  komplexe Zahlen z1 = x1 +y1i und z2= x2 + y2i mit x1, y1, x2, y2 Element aus R, welche die beiden Gleichungen erfüllt.)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Ich bin folgendermaßen vorgegangen, um diese Aufgabe zu lösen:
I           (3+5i) z1+ (4-7i) z2 = 10+9i
                      z1 + (4-7i) z2= (10+9i) / (3+5i)
                      z1                 = (10+9i) / (3+5i) - 4 z2+ 7i z2

II           (2- 6i) z1 +( 5-3i) z2 = 5-i
              
                                 I in II
1,125 + 51,875 i -3 z2 - 17z2i -42 = 5+i
                                z2                   = - (45,875-50,875i)/ (3+17i)


Da diese Gleichungen extrem lang wurden beim Rechnen, habe ich einige Zwischenschritte weggelassen. Bin ich auf dem totalen Holzweg oder sieht das bis jetzt so richtig aus?

        
Bezug
LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 01:19 Mo 22.04.2013
Autor: reverend

Hallo Titanium,

ich kann Dir nicht ganz folgen.

> Lösen Sie das lineare Gleichungssystem
> (3+5i) zi +(4- 7i) z2 = 10+ 9i
> (2- 6i) z1 + (5-3i) z2 = 5 -i.

>

> ( Gesucht sind zwei komplexe Zahlen z1 = x1 +y1i und z2=
> x2 + y2i mit x1, y1, x2, y2 Element aus R, welche die
> beiden Gleichungen erfüllt.)

Es wäre schön, wenn Du die Formeldarstellung des Forums benutzt. Dann sind Deine Gleichungen gleich viel besser lesbar. ;-)

> Ich bin folgendermaßen vorgegangen, um diese Aufgabe zu
> lösen:
> I (3+5i) z1+ (4-7i) z2 = 10+9i
> z1 + (4-7i) z2= (10+9i) / (3+5i)
> z1 = (10+9i) /
> (3+5i) - 4 z2+ 7i z2

Schon [mm] z_1 [/mm] und [mm] z_2 [/mm] würden die Lesbarkeit deutlich verbessern...
Ansonsten: bis hierher richtig.

> II (2- 6i) z1 +( 5-3i) z2 = 5-i

>

> I in II
> 1,125 + 51,875 i -3 z2 - 17z2i -42 = 5+i
> z2 = -
> (45,875-50,875i)/ (3+17i)

Tja, und das kann ich schon nicht mehr nachvollziehen.

> Da diese Gleichungen extrem lang wurden beim Rechnen, habe
> ich einige Zwischenschritte weggelassen. Bin ich auf dem
> totalen Holzweg oder sieht das bis jetzt so richtig aus?

Einfacher nachzuvollziehen wäre wohl das Gaußverfahren, aber prinzipiell spricht überhaupt nichts gegen das von Dir verwendet Einsetzungsverfahren. Man könnte Dir leichter folgen, wenn Du zwischendurch ein bisschen vereinfachen würdest, also z.B. [mm] \bruch{10+9i}{3+5i}=\bruch{1}{34}(75-23i). [/mm]

Wie es aussieht, hat der Aufgabensteller nicht gerade Wert auf "einfache" komplexe Zahlen gelegt.

Grüße
reverend

Bezug
                
Bezug
LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:27 Mo 22.04.2013
Autor: Titanium


Danke vielmals.. und mit der Schreibweise werde ich in Zukunft achten und versuche es  jetzt auch mal direkt,
als Lösung hab ich für z1 [mm] =289,5-325\bruch{15}{34} [/mm] und
für z2= [mm] -\bruch{584}{17}-\bruch{364i}{17} [/mm]
ist das Ergebnis hierfür richtig?

Gruß

Bezug
                        
Bezug
LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 03:07 Mo 22.04.2013
Autor: reverend

Hallo nochmal,

> Danke vielmals.. und mit der Schreibweise werde ich in
> Zukunft achten und versuche es jetzt auch mal direkt,

Super. Das sieht doch gleich viel besser aus! [daumenhoch]

> als Lösung hab ich für z1 [mm]=289,5-325\bruch{15}{34}[/mm] und
> für z2= [mm]-\bruch{584}{17}-\bruch{364i}{17}[/mm]
> ist das Ergebnis hierfür richtig?

Hm. Bei mir geht die Probe nicht auf.
Wie bist Du dahin gekommen?
Rechne erst nochmal selbst nach, aber wenn Du keinen Fehler in der Rechnung findest, dann werden wir nur helfen können, wenn Du sie mit möglichst vielen Zwischenschritten postest. Das ist u.U. viel Schreibarbeit, daher lohnt es sich, erst einmal selbst nach Fehlern zu suchen.

Es gibt online-Rechner für komplexe Zahlen. Vielleicht helfen die ja schonmal bei der Kontrolle von Zwischenergebnissen?

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]