matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieL-Integrierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - L-Integrierbarkeit
L-Integrierbarkeit < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L-Integrierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:23 So 27.06.2010
Autor: Limaros

Aufgabe
Sie [mm] f:\IR^n \to \IR [/mm] L-integrierbar. Sei [mm] g:\IR^n \to \IR, [/mm] x [mm] \to [/mm] g(x):=ln(1+|f(x)|).
Ist die Funktion g L-meßbar, ist g L-integrierbar?

Also, ich habe eine ganze Menge von Funktionen diesbezüglich zu untersuchen, aber ich dachte, ich frage erst mal nur nach einer.

Also zur L-Meßbarkeit, würde ich sagen, daß ja. |f| ist sogar L-integrierbar und die konstante Funktion ist auch meßbar, also ist auch 1+|f| meßbar. Also gibt es eine Treppenfunktion [mm] h_k, [/mm] k [mm] \in \IN, [/mm] so daß gilt [mm] lim_{k \to \infty} h_k [/mm] = 1+|f|. Also gibt auch [mm] lim_{k \to \infty} ln(h_k) [/mm] = ln(1+|f|), also ist g meßbar.

Also Frage 1: Stimmt das?

Nun zur L-Integrierbarkeit von g. Da meine ich ja irgendwie, daß die Antwort auch ja lautet, aber Versuche, das zu begründen, gehen irgendwie ins Leere. Also Frage 2: Könnte mir da jemand einen Tipp geben?

Danke schonmal...

        
Bezug
L-Integrierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 01.07.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
L-Integrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:43 Do 18.11.2010
Autor: fred97

1+|f| ist meßbar, ln ist stetig, somit ist g meßbar  (die Verkettung meßbarer Funktionen ist meßbar)

Füt t [mm] \ge [/mm] 0 gilt:

  ln(1+t) [mm] \le [/mm] t,

also ist |g|=g = ln(1+|f|) [mm] \le [/mm] |f|, somit:

            [mm] \integral_{}^{}{|g| dx}= \integral_{}^{}{g dx} \le \integral_{}^{}{|f| dx} [/mm] < [mm] \infty [/mm]

g ist also integrierbar.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]