matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKurvenintegrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Kurvenintegrale
Kurvenintegrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegrale: ohne Satz von Stokes
Status: (Frage) beantwortet Status 
Datum: 15:13 Fr 15.01.2016
Autor: gotoxy86

Aufgabe
Berechnen sie die Kurvenintegrale ohne Satz von Stokes!

[mm] \int_{\gamma_k}{\vec{f}d\vec{x}} [/mm]

Flächenstück in Parameterdarfstellung:

[mm] \vec{X}=\vektor{r\cos\varphi\\r\sin\varphi\\1-r},\qquad 0\le r\le 1,\qquad 0\le\varphi\le\br{\pi}{2},\qquad\vec{n}\vec{e_3}\ge0 [/mm]

Vektoreld:

[mm] \vec{f}=\vektor{xy\\x\\y+z} [/mm]

Der Rand von F besteht aus zwei Geradenstücken (gamma1, gamma2) und einem Viertelkreisring (gamma3).

[mm] \varphi_3=\vektor{1\\t}\Rightarrow\gamma_3=\vektor{\cos{t}\\\sin{t}\\0}\Rightarrow\dot{\gamma_3}=\vektor{-\sin{t}\\\cos{t}\\0},\qquad0\le t\le\br{\pi}{2} [/mm]

Wie komme ich auf [mm] \varphi_k [/mm] (Parametrisierung der Randkurve?) und wie kommt man von dort auf [mm] \gamma_k [/mm] (Parametrisierung der Randkurve?)? Außerdem erschließt sich mir der Intervall nicht.

        
Bezug
Kurvenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Fr 15.01.2016
Autor: leduart

Hallo
das Intervall ist einfach gegeben, was willst du da erschliessen?
[mm] g_1: (t,0.1-t)^T [/mm]  t von 0 bs 1
[mm] g_2: 0,t,1-t)^T [/mm]
K: [mm] (cos(\phi), sin(\phi),0)^T [/mm] , [mm] 0\le \phi\le \pi/2 [/mm]
die letzte Frage verstehe ich nicht, was ist denn [mm] \phi_3? [/mm]
Deine Fläche im bild, aus der man die Parametrisierung ablesen kann
[Dateianhang nicht öffentlich]
Gruss leduart

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]