matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKurvenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Kurvenintegral
Kurvenintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:49 Do 26.02.2009
Autor: Surfer

wow erstmal vielen Dank für deine Mühe die du dir gemacht hast. Habe gerade auch diese Aufgabe hier gerechnet, und wollte eigentlich parametrisieren also r von [0,1] ist klar, da der Kreis ja Radius 1 hat aber [mm] \phi [/mm] wollte ich von [0, [mm] 2\pi] [/mm] laufen lassen was aber falsch war, da es nämlich nur von [mm] [-\bruch{\pi}{2 },\bruch{\pi}{2}] [/mm] geht, und das ist mir wieder unklar, woran erkenn ich das?

[Dateianhang nicht öffentlich]

lg Surfer

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Do 26.02.2009
Autor: angela.h.b.


> wow erstmal vielen Dank für deine Mühe die du dir gemacht
> hast. Habe gerade auch diese Aufgabe hier gerechnet, und
> wollte eigentlich parametrisieren also r von [0,1] ist
> klar, da der Kreis ja Radius 1 hat aber [mm]\phi[/mm] wollte ich von
> [0, [mm]2\pi][/mm] laufen lassen was aber falsch war, da es nämlich
> nur von [mm][-\bruch{\pi}{2 },\bruch{\pi}{2}][/mm] geht, und das ist
> mir wieder unklar, woran erkenn ich das?

Hallo,

Du arbeitest in Polarkoordinaten, also [mm] x=r\cos\varphi. [/mm]

Nun ist angegeben: [mm] x\ge [/mm] 0.

Du mußt nun darüber nachdenken, für welche Winkel   [mm] r\cos\varphi\ge [/mm] 0 richtig ist.

(Das Nachdenken kann man unterstützen, indem man sich den cos kurz skizziert. Ich mache das ständig - es entwirrt.)

Du kannst Dir  auch den Kreis [mm] x^2+y^2\le [/mm] 1 skizzieren und den Bereich mit pos. x markieren. Dann legst Du Deinen Stift auf die x-Achse und rehst, und siehst so die Winkel, für welche Du im entsprechenden Bereich landest.  Wahrscheinlich ist das die bessere Methode.

Gruß v. Angela


>  
> [Dateianhang nicht öffentlich]
>  
> lg Surfer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]