matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenKurvendiskussion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Kurvendiskussion
Kurvendiskussion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:05 Fr 05.02.2010
Autor: RWBK

Aufgabe
Führen sie eine Kurvendiskussion durch
[mm] f(x)=x^2-3+e^x [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
So ich habe dann folgende Ableitungen aufgestellt:

[mm] f'(x)=2x+e^x [/mm]
[mm] f''(x)=2+e^x [/mm]
[mm] f'''(x)=e^x [/mm]

So dann wollte ich die Extremwerte bestimmen:

f´(x)=0
f´´(x) = (ungleich) 0

f´(x)=0
[mm] 0=2x+e^x [/mm]
1.Fall 0=2x
         0=x
2.Fall 0 = [mm] (ungleich)e^x [/mm]
[mm] f´´(0)=-2+e^0 [/mm]      
          = -2<0 Hochpunkt.

[mm] f(0)=0²-3+e^0 [/mm] =-2

Damit war für mich klar, es gibt einen Hochpunkt nämlich H(0/-2)

Mein Buch sagt aber sagt eine andere Lösung nämlich T(-0,352/-2,17)

Mache ich etwas falsch??

RWBK

        
Bezug
Kurvendiskussion: nicht termweise
Status: (Antwort) fertig Status 
Datum: 16:12 Fr 05.02.2010
Autor: Loddar

Hallo RWBK!


>  So ich habe dann folgende Ableitungen aufgestellt:
>  
> [mm]f'(x)=2x+e^x[/mm]
> [mm]f''(x)=2+e^x[/mm]
> [mm]f'''(x)=e^x[/mm]

[ok]

  

> So dann wollte ich die Extremwerte bestimmen:
>  
> f´(x)=0
> f´´(x) = (ungleich) 0

[ok]

  

> f´(x)=0
> [mm]0=2x+e^x[/mm]

[ok]


> 1.Fall 0=2x
> 0=2

Davon abgesehen, dass Du falsch umformst, denn $0 \ = \ 2*x$ hat die Lösung $x \ = \ 0$ , darfst Du bei Summen nicht die nullstellen summandenweise betrachten.

Das gilt nur bei Produkten.


Gruß
Loddar


Bezug
                
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 Fr 05.02.2010
Autor: RWBK

Das mit dem Falsch aufschreiben 0=2 ist mir auch noch aufgefallen hab es auch nachher noch geändert aber das andere hab ich nicht gewusst danke

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Fr 05.02.2010
Autor: RWBK

So das würde ja dann heißen, dass ich [mm] 0=2+e^x [/mm] stehen lassen müsste und dieses weiter auflösen!!

[mm] 0=2+e^x [/mm]  
[mm] -e^x=2 [/mm]
x=-ln(2)
x=-0,693

Das passt aber leider immer noch nicht mit dem Ergebniss vom Löser überein:!

Bezug
                        
Bezug
Kurvendiskussion: Näherungsverfahren
Status: (Antwort) fertig Status 
Datum: 16:22 Fr 05.02.2010
Autor: Loddar

Hallo RWBK!


Aufgepasst: Du musst die Gleichung [mm] $2*\red{x}+e^x [/mm] \ = \ 0$ lösen.

Diese Gleichung lässt sich nicht geschlossen nach $x \ = \ ...$ umstellen, so dass Du wohl auf ein Näherungsverfahren (wie z.B. MBNewton-Verfahren) zurückgreifen musst.


Gruß
Loddar


Bezug
                                
Bezug
Kurvendiskussion: Afugabe
Status: (Frage) beantwortet Status 
Datum: 16:40 Fr 05.02.2010
Autor: RWBK

Okay,das kenne ich jetzt noch nicht aber ich werde es versuchen.Jetzt aber noch eine andere Frage woran erkenne ich das denn das ich die Aufgabe nicht einfach nach x umstellen kann.Danke erst mal für deine Hilfe

Bezug
                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Fr 05.02.2010
Autor: leduart

Hallo
1. [mm] 2x+e^x=0 [/mm] hat keine Lösung die man einfach ausrechnen kann. was man sehen kann: die Nst muss zwischen 0 und -1 liegen.
[mm] 2+e^x= [/mm] 0 hat keine Lösung, da beide Summanden immer positiv sind.
Du kannst die Aufgabe nicht nach x umstellen, weil du immer entweder ne e- funktion oder ne ln Funktion hast.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]