Kurvendiskussion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:53 So 14.10.2007 | Autor: | NullBock |
Hallo!
ich hab ne allgemeine frage was die Polstellenberechnung bei kruvendiskussionen/funktionsuntersuchung angeht.
ich habe nicht wirklich herausgefunden wie man einen Pol berechnet?! Und wie kriege ich raus ob dieser pol mit VZW (Vorzeichenwechsel) ist oder ohne?
Ich werde vielleicht etwas später noch andere fragen zur kurvendiskusion reinschreiben, würd mich freuen wenn ihr mir anworten könnt.
gruß
nullbock
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:04 So 14.10.2007 | Autor: | M.Rex |
Hallo.
Eine Polstelle [mm] x_{p} [/mm] ist eine nicht behebbare Definitionslücke, also z.B. eine Nullstelle des Nenners einer gebrochen rationalen Funktion.
Un jetzt zu prüfen, ob ein Vorzeichenwechsel vorliegt, musst du zwei Grenzwertbetrachtungen machen, und zwar:
[mm] \limes_{h\rightarrow0}(f(x_{p}+h))
[/mm]
und
[mm] \limes_{h\rightarrow0}(f(x_{p}-h))
[/mm]
das heisst, du näherst dich der Lücke einmal von Links und einmal von rechts an, und vergleichst die Grenzwerte.
hast du dann: [mm] +\infty [/mm] und [mm] -\infty [/mm] , hast du einen VZW (Bsp: [mm] f(x)=\bruch{1}{x³}, x_{p}=0), [/mm] hast du dagegen bei beiden [mm] +\infty [/mm] oder [mm] -\infty, [/mm] hast du keinen VZW (Bsp: [mm] f(x)=\bruch{1}{x^{4}}, x_{p}=0)
[/mm]
Marius
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:49 So 14.10.2007 | Autor: | NullBock |
Hallo,
erst einmal danke für die antwort, ich habs verstanden (mir ist eingefallen dass ich das eingentlich gewusst habe aber es vergessen hatte, jetzt ist es wieder aufgefrischt^^ also danke)
Ich hab dann noch zwei weitere fragen, die erste wäre wegen der Kettenregel. Also die Kettenregel wird benutzt wenn man eine Potenz ableiten will (also etwas in der klammer, z.B. eine d. binomischen formel)
Kettenregel: f'(x)= u'(v(x))*v'(x)
Bsp: [mm] f(x)=(5-3x)^{4}
[/mm]
äussere Funktion [mm] u(v)=v^{4} [/mm] -> [mm] u'(v)=4v^{3}
[/mm]
innere Funktion v(x)=5-3x -> v'(x)=-3
muss ich jetzt nur u'(v) * v'(x) machen oder was?
die zweite frage wäre bezüglich der wendestelle.
nämlich, wie berechnet man eine wendestelle bei einer funktion? ich versteh es nicht wie es im buch steht^^" (ps: kann man wendestellen mit dem GTR berechnen?)
gruß
nullbock
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:00 So 14.10.2007 | Autor: | M.Rex |
Hallo.
Zur Kettenregel:
Wenn du zwei Verkettete Funktionen hast, das heisst, das Argument der äusseren ist wiederum eine (die sog. innere) Funktion, musst du zu Ableiten die Kettenregel verwenden.
Nehmen wir als Beispiel:
[mm] f(x)=\bruch{1}{x²+1}
[/mm]
Dann ist (y=)g(x)=x²+1 die innere Funktion, und [mm] f(y)=\bruch{1}{y} [/mm] die äussere Fkt.
Jetzt gilt:
(f(g(x)))'=f'(g(x))*g'(x)
Also hier:
[mm] f'(y)=-\bruch{1}{x²}
[/mm]
und g'(x)=2x
Also:
[mm] (f(x)=\bruch{1}{x²+1})'=-\bruch{1}{g(x)}*2x=-\bruch{2x}{x²+1}
[/mm]
Zur Wendestelle:
Hier brauchst du die zweite und die dritte Ableitung.
Von der zweiten Ableitung suchst du die Nullstellen [mm] x_{w}. [/mm] Diese Werte setzt du dann in die dritte Ableitung ein, und wenn gilt. [mm] f'''(x_{w}\ne0, [/mm] ist [mm] W(x_{w}/f(x_{w}) [/mm] ein Wendepunkt, wobei du [mm] f(x_{w}) [/mm] noch berechnen musst.
Als kleine Erklärung dazu noch: Wendepunkte sind die Punkte, an denen die Steigung besonders gross ist, also sichst du im Prinzip die Extremunkte der Steigungsfunktion, die ja durch die erste Ableitung gegeben ist.
Also machst du eine Extrempunktberechnung der ersten Ableitung.
Marius
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:41 So 14.10.2007 | Autor: | NullBock |
hallo nochmal,
ok, dann hab ich die wendestelle verstanden und die kettenregel geht dann auch klar.
eine kleine frage zur extremwertberechnung: wenn das ergebnis am ende kleiner 0 ist ist es ein maximum und wenn es größer 0 ist ist es ein minimum. richtig?
dankeschön für die schnelle hilfe!
gruß
nullbock
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:45 So 14.10.2007 | Autor: | M.Rex |
Hallo
> hallo nochmal,
>
> ok, dann hab ich die wendestelle verstanden und die
> kettenregel geht dann auch klar.
>
> eine kleine frage zur extremwertberechnung: wenn das
> ergebnis am ende kleiner 0 ist ist es ein maximum und wenn
> es größer 0 ist ist es ein minimum. richtig?
Wenn du mit Ergebnis den Wert der Zweiten Ableitug, also [mm] f''(x_{e}) [/mm] meinst, ja.
Der Extrempunkt ist dann aber [mm] E(x_{e}/f(x_{e})
[/mm]
>
> dankeschön für die schnelle hilfe!
>
> gruß
>
> nullbock
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:49 So 14.10.2007 | Autor: | NullBock |
hi,
jap genau das hab ich gemeint, danke für die hilfe!
gruß
nullbock
|
|
|
|