matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisKurvendiskussion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Kurvendiskussion
Kurvendiskussion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:53 So 01.01.2006
Autor: Fergie_2005

Natürlich erstmal ein gesundes neues Jahr.

Und zwar habe ich eine Funktionschar gegeben die wie folgt lautet:
f(x) = -x³ +4t² / tx²

meine Nullstellen wären bei 19/4 t und -15/4t

Meine Ableitungen:  f´(x) = [mm] tx^4 [/mm] - 8t^4x / [mm] (tx²)^2 [/mm]
                                f´´(x) = [mm] 8tx^7 [/mm] -16t / [mm] (tx²)^4 [/mm]

und dann hätte ich no h ne dritte Ableitung aber in einer anderen schreibweise. f´´´(x)= 6/t [mm] *x^4 [/mm] - [mm] 48t²/x^5 [/mm]

Könnte bitte jemand diese Ergebnisse kontrollieren und sie berichtigen. Denn ich weiß nicht ob diese Ableitungen richtig sind und ohne die kann ich nicht weitermachen und natürlich bitte auch kontrollieren ob die Nullstellen rkorrekt sind. Es wäre sehr nett von euch.



        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 So 01.01.2006
Autor: mathmetzsch

Hallo,

also ich bekomme für die erste Ableitung (Quotientenregel):
[mm] f(x)=\bruch{-x^{3}+4t^{2}}{tx^{2}} [/mm]
[mm] f'(x)=\bruch{-3x^{2}tx^{2}-(-x^{3}+4t^{2})2tx}{t^{2}x^{4}} [/mm]
[mm] =\bruch{-x^{4}t-8xt^{3}}{t^{2}x^{4}} [/mm]

Das müsste so stimmen. Überprüf deine Ableitung noch mal und bügele die Folgefehler aus. Die Nullstellen stimmen nicht. Ich habe mir die Funktion gerade mal plotten lassen und da gibt es nur eine Nullstelle, ungefähr bei x=2 für t=1.

Du musst sie so berechnen (Beachte, dass man hier [mm] t,x\not=0 [/mm] voraussetzen muss):
[mm] \bruch{-x^{3}+4t^{2}}{tx^{2}}=0 [/mm]
[mm] \gdw -x^{3}+4t^{2}=0 [/mm]
[mm] \gdw 4t^{2}=x^{3} [/mm]
[mm] \gdw \wurzel[3]{4t^{2}}=x [/mm]

Das ist die Nullstelle.

Viele Grüße
Daniel



Bezug
                
Bezug
Kurvendiskussion: Fehler in der Ableitung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 So 01.01.2006
Autor: Disap

Hallo.
Aber ein besonderes Hallo an mathematsch.

> also ich bekomme für die erste Ableitung
> (Quotientenregel):
>  [mm]f(x)=\bruch{-x^{3}+4t^{2}}{tx^{2}}[/mm]
>  
> [mm]f'(x)=\bruch{-3x^{2}tx^{2}-(-x^{3}+4t^{2})2tx}{t^{2}x^{4}}[/mm]

[ok]

>  [mm]=\bruch{-xt^{4}-8xt^{3}}{t^{2}x^{4}}[/mm]

[notok]
Wahrscheinlich ein kleiner Tippfehler.
Denn [mm] -3x^{2}tx^{2} [/mm] ergibt etwas mit [mm] x^4... [/mm] statt eben [mm] t^4. [/mm] Ebenfalls ist es Plus und nicht Minus,

Richtig lautet es

f'(x) [mm] =\bruch{-x^4t+8xt^{3}}{t^{2}x^{4}} [/mm]

Wobei man allerdings noch kürzen kann.

Grüße Disap

Bezug
                        
Bezug
Kurvendiskussion: behoben
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 So 01.01.2006
Autor: mathmetzsch

Hallo,

danke für den Hinweis. Ich habe mich vertippt!

VG Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]