Kurven < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:07 Di 09.06.2009 | Autor: | SusanneK |
Aufgabe | Durch [mm] f_1, f_2:[0,2\pi] \to \IR^2 [/mm] mit
[mm] f_1(t):=\vektor{cos t\\sin t}, f_2(t):=\vektor{cos 2t\\sin 2t}[/mm] sind Kurven [mm] W_1:=[f_1], W_2:=[f_2] [/mm] bestimmt, deren Spur der Einheitskreis ist.
Zeigen Sie: [mm] W_1+W_1=W_2 [/mm] |
Ich habe diese Frage in keinem anderen Forum gestellt.
Hallo,
ich denke, [mm] f_2 [/mm] durchläuft den Einheitskreis doppelt so schnell wie [mm] f_1, [/mm] dadurch erscheint mit unlogisch, dass [mm] W_1+W_1=W_2 [/mm] sein soll, dann müsste ja eher [mm] W_2+W_2=W_1 [/mm] ergeben.
Es ist ja auch nicht [mm] cos t + cos t = cos 2t [/mm] sondern 2cos t.
Worin liegt mein Denkfehler ?
Danke, Susanne.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:44 Di 09.06.2009 | Autor: | statler |
Hallo!
> Durch [mm]f_1, f_2:[0,2\pi] \to \IR^2[/mm] mit
> [mm]f_1(t):=\vektor{cos t\\sin t}, f_2(t):=\vektor{cos 2t\\sin 2t}[/mm]
> sind Kurven [mm]W_1:=[f_1], W_2:=[f_2][/mm] bestimmt, deren Spur der
> Einheitskreis ist.
>
> Zeigen Sie: [mm]W_1+W_1=W_2[/mm]
> ich denke, [mm]f_2[/mm] durchläuft den Einheitskreis doppelt so
> schnell wie [mm]f_1,[/mm] dadurch erscheint mit unlogisch, dass
> [mm]W_1+W_1=W_2[/mm] sein soll, dann müsste ja eher [mm]W_2+W_2=W_1[/mm]
> ergeben.
Von Geschwindigkeiten ist hier ja noch keine Rede. [mm] f_2 [/mm] durchläuft den Kreis vor allen Dingen zweimal, und deswegen gilt die Gleichung. Du müßtest dir deutlich machen, was das + in [mm] W_1 [/mm] + [mm] W_1 [/mm] = [mm] W_2 [/mm] genau bedeutet, also wie Kurven addiert werden. Und dann nachweisen, daß diese Gleichung gilt.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:06 Di 09.06.2009 | Autor: | SusanneK |
Hallo Dieter
vielen Dank für Deine Hilfe !
> Von Geschwindigkeiten ist hier ja noch keine Rede. [mm]f_2[/mm]
> durchläuft den Kreis vor allen Dingen zweimal, und deswegen
> gilt die Gleichung. Du müßtest dir deutlich machen, was das
> + in [mm]W_1[/mm] + [mm]W_1[/mm] = [mm]W_2[/mm] genau bedeutet, also wie Kurven
> addiert werden. Und dann nachweisen, daß diese Gleichung
> gilt.
Ich habe mir das Skript jetzt mit Deiner Erklärung nochmals zu Gemüte geführt und glaube, es jetzt besser verstanden zu haben:
Da [mm] W_1 [/mm] und [mm] W_2 [/mm] jetzt die gleiche Spur durchlaufen und ein Punkt auf [mm] W_1 [/mm] nie einen Punkt auf [mm] W_2 [/mm] überholt und [mm] W_1 [/mm] und [mm] W_2 [/mm] die gleichen Start- und Endpunkte haben, gilt [mm] W_1 + W_1 = W_2 [/mm].
Stimmen diese Überlegungen jetzt ?
LG und danke, Susanne aus Köln.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:17 Di 09.06.2009 | Autor: | Denny22 |
Mit [mm] $W_1+W_1$ [/mm] ist eine "Zusammensetzung von Wegen" gemeint. Das heißt Du durchläufst [mm] $W_1$ [/mm] und anschließend durchläufst du noch einmal [mm] $W_1$ [/mm] (d.h. du durchläufst die Einheitskreislinie zweimal), dann ist diese Zusammensetzung der Wege gleich dem Weg [mm] $f_2$ [/mm] (der die Einheitskreislinie auch zweimal durchläuft). Siehe daher mal unter "Zusammensetzung von Integrationswegen" nach.
Gruß Denny
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:58 So 14.06.2009 | Autor: | SusanneK |
Hallo Denny,
lieber spät als nie:
VIELEN DANK für deine Hilfe !
(Konnte ein paar Tage nicht ins Forum.)
LG, Susanne.
> Mit [mm]W_1+W_1[/mm] ist eine "Zusammensetzung von Wegen" gemeint.
> Das heißt Du durchläufst [mm]W_1[/mm] und anschließend durchläufst
> du noch einmal [mm]W_1[/mm] (d.h. du durchläufst die
> Einheitskreislinie zweimal), dann ist diese Zusammensetzung
> der Wege gleich dem Weg [mm]f_2[/mm] (der die Einheitskreislinie
> auch zweimal durchläuft). Siehe daher mal unter
> "Zusammensetzung von Integrationswegen" nach.
>
> Gruß Denny
|
|
|
|