Kugelwelle in Wellengleichung < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:07 Mo 11.07.2011 | Autor: | tedd |
Aufgabe | Beweisen Sie, dass die Kugelwelle eine Lösung der Wellengleichung im Vakuum ist. |
Hi!
Also ich habe da so meine Probleme die bei der Ortsableitung anfangen...
Für die Kugelwelle nehme ich folgendes an:
[mm] $\vec{E} [/mm] = [mm] \frac{\vec{E_{0}}}{r} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})}$
[/mm]
und die Wellengleichung für das Vakuum lautet wie folgt:
[mm] $\nabla^{2}\cdot\vec{E} [/mm] - [mm] \frac{1}{c^{2}} \cdot \frac{\partial^{2}}{\partial t^{2}} \cdot \vec{E} [/mm] = 0$
Zunächst führe ich die Ortsableitungen aus:
[mm] $\nabla\cdot\vec{E}=\nabla\cdot\frac{\vec{E_{0}}}{r} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})}$
[/mm]
[mm] $=-\frac{\vec{E_{0}}}{r^2}\cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})} [/mm] + i [mm] \cdot \vec{k} \cdot \frac{\vec{E_{0}}}{r} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})} [/mm] $
und somit
[mm] $\nabla^{2}\cdot\vec{E}$
[/mm]
$= [mm] -\left(-\frac{1}{2} \cdot \frac{\vec{E_{0}}}{r^3} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})} + i \cdot \vec{k} \cdot \frac{\vec{E_{0}}}{r^2} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})}\right) [/mm] + [mm] \left(-i \cdot \vec{k} \cdot \frac{\vec{E_{0}}}{r^2} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})} - \vec{k}^2 \cdot \frac{\vec{E_{0}}}{r} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})} \right)$
[/mm]
$= [mm] \frac{1}{2} \cdot \frac{\vec{E_{0}}}{r^3} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})} [/mm] - 2 [mm] \cdot [/mm] i [mm] \cdot \vec{k} \cdot \frac{\vec{E_{0}}}{r^2} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})} [/mm] - [mm] \vec{k}^2 \cdot \frac{\vec{E_{0}}}{r} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})}$
[/mm]
Damit die Kugelwelle die Wellengleichung erfüllt müssen irgendwie die ersten 2 Terme wegfallen...
zum ersten Term habe ich mir mit der Relation [mm] $\nabla^{2}\frac{1}{r}=\delta(r)$ [/mm] folgendes gedacht:
[mm] $\frac{1}{2} \cdot \frac{\vec{E_{0}}}{r^3} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})} [/mm] = [mm] \vec{E_{0}} \cdot \underbrace{\frac{1}{2 \cdot r^{3}}}_{\nabla^{2}\cdot\frac{1}{r}} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})} [/mm] = [mm] \vec{E_{0}} \cdot \delta(r) \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})}$
[/mm]
Der würde also schonmal rausfallen für alle Radien $r = 0$...
Doch was ist mit
$- 2 [mm] \cdot [/mm] i [mm] \cdot \vec{k} \cdot \frac{\vec{E_{0}}}{r^2} \cdot e^{-i(\omega \cdot t - \vec{k} \cdot \vec{r})}$
[/mm]
evtl. könnte man hier behaupten, dass der auch gegen 0 geht, zumindest für große Radien, da der Term mit [mm] \frac{1}{r^{2}} [/mm] abfält aber wirklich zufrieden bin ich damit noch nicht...
Für einen Tipp wäre ich sehr dankbar ;)
Besten Gruß,
tedd
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:01 Mo 11.07.2011 | Autor: | leduart |
Hallo
mir scheint, du hast für [mm]\triangle[/mm] einfach [mm] d^2/dr^2 [/mm] eingesetzt. sieh unter kugelkoordinaten nach, das ist falsch.
gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:02 Mo 11.07.2011 | Autor: | tedd |
Hi leduart,
versteh nicht so ganze wieso das nicht gehen sollte...
Aber selbst wenn ich nach x,y und z in kartesischen Koordinaten ableite kommt nicht das raus was ich will:
[mm] \vec{E}=\frac{\vec{E_0}}{\sqrt{x^2+y^2+z^2}}*e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)}=\vec{E_0}\cdot\left(x^2+y^2+z^2\right)^{-\frac{1}{2}}*e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)}
[/mm]
betrachte jetzt mal nur den x-Anteil der Ableitungen:
[mm] \nabla_{x} \cdot \vec{E}
[/mm]
[mm] $=-\frac{1}{2} \cdot [/mm] 2 [mm] \cdot [/mm] x [mm] \cdot \vec{E_0} \cdot \left(x^2+y^2+z^2\right)^{-\frac{3}{2}}*e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)} [/mm] + i [mm] \cdot k_x \cdot \vec{E_0}\cdot\left(x^2+y^2+z^2\right)^{-\frac{1}{2}}*e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)}$
[/mm]
$=-x [mm] \cdot \vec{E_0} \cdot \left(x^2+y^2+z^2\right)^{-\frac{3}{2}}*e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)} [/mm] + [mm] i\cdot k_x \cdot \vec{E_0}\cdot\left(x^2+y^2+z^2\right)^{-\frac{1}{2}}*e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)}$
[/mm]
und
[mm] $\nabla_x^{2} \vec{E}$
[/mm]
$= [mm] -\vec{E_0} \cdot \left(x^2+y^2+z^2\right)^{-\frac{3}{2}}*e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)} [/mm] - 2 [mm] \cdot x^2 \cdot \left(-\frac{3}{2}\right) \cdot \left(x^2+y^2+z^2\right)^{-\frac{5}{2}} *e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)} [/mm] - i [mm] \cdot k_x \cdot \vec{E_0} \cdot \left(x^2+y^2+z^2\right)^{-\frac{3}{2}}*e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)}$
[/mm]
$+ i [mm] \cdot k_x \cdot \vec{E_0} \cdot \left(-\frac{1}{2}\right) \cdot [/mm] 2 [mm] \cdot [/mm] x [mm] \cdot \left(x^2+y^2+z^2\right)^{-\frac{3}{2}}*e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)} [/mm] - [mm] k_x^{2} \cdot \vec{E_0}\cdot\left(x^2+y^2+z^2\right)^{-\frac{1}{2}}*e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)}$
[/mm]
[mm] $=\left(x^2+y^2+z^2\right)^{-\frac{1}{2}} \cdot e^{-i\left(\omega*t-\vec{k}*\vektor{x \\ y \\z}\right)} \cdot \left[-\vec{E_0} \cdot \left(x^2+y^2+z^2\right)^{-1} + 3 \cdot x^2 \cdot \left(x^2+y^2+z^2\right)^{-2} - i \cdot 2 \cdot k_x \cdot \vec{E_0} \cdot \left(x^2+y^2+z^2\right)^{-1} - k_x^{2} \cdot \vec{E_0}\right]$
[/mm]
Sofern ich richtig gerechnet habe....
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:14 Mo 11.07.2011 | Autor: | notinX |
Hallo,
> Hi leduart,
>
> versteh nicht so ganze wieso das nicht gehen sollte...
was er meinte ist, dass der Laplace-Operator in Kugelkoordinaten so aussieht:
[mm] $\mathbf{\Delta}=\mathbf{\nabla}^2 [/mm] = [mm] \frac{1}{r^2}\frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) [/mm] + [mm] \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta} \left( \sin\theta \frac{\partial}{\partial\theta} \right) +\frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\varphi^2}$
[/mm]
> Aber selbst wenn ich nach x,y und z in kartesischen
> Koordinaten ableite kommt nicht das raus was ich will:
>
Ich glaube nicht, dass Du Dir einen Gefallen tust, wenn Du es mit kartesischen Koordinaten versuchst.
Gruß,
notinX
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:21 Mo 11.07.2011 | Autor: | tedd |
Also meiner Meinung nach sieht die Ableitung in Kugelkoordinaten ähnlich schwierig aus...
EDIT:
Also naja vielleicht war ich doch zu voreilig... beim ersten Term $ [mm] \frac{1}{r^2}\frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) [/mm] $
ohne die Winkel kommt folgendes raus:
[mm] $\frac{\partial}{\partial r} \vec{E} [/mm] = [mm] -\vec{E_0} [/mm] * [mm] \frac{1}{r^2} [/mm] * [mm] e^{-i(\omega*t-\vec{k}*\vec{r})} [/mm] + i * k * [mm] E_0 [/mm] * [mm] \frac{1}{r} [/mm] * [mm] e^{-i(\omega*t-\vec{k}*\vec{r})}$
[/mm]
und somit
[mm] $\left( r^2 \frac{\partial}{\partial r} \right) [/mm] = [mm] -\vec{E_0} [/mm] * [mm] e^{-i(\omega*t-\vec{k}*\vec{r})} [/mm] + i * k * [mm] E_0 [/mm] * r * [mm] e^{-i(\omega*t-\vec{k}*\vec{r})}$
[/mm]
und
[mm] $\frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) [/mm] = -i * k * [mm] \vec{E_0} [/mm] * [mm] e^{-i(\omega*t-\vec{k}*\vec{r})} [/mm] + i * k * [mm] E_0 [/mm] * [mm] e^{-i(\omega*t-\vec{k}*\vec{r})} [/mm] - [mm] k^2 [/mm] * r * [mm] E_0 [/mm] * [mm] e^{-i(\omega*t-\vec{k}*\vec{r})} [/mm] = - [mm] k^2 [/mm] * r * [mm] E_0 [/mm] * [mm] e^{-i(\omega*t-\vec{k}*\vec{r})}$
[/mm]
bzw. dann mit dem ganzen Term
$ [mm] \frac{1}{r^2}\frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) [/mm] = - [mm] \frac{1}{r} k^2 [/mm] * [mm] E_0 [/mm] * [mm] e^{-i(\omega*t-\vec{k}*\vec{r})}$
[/mm]
was ja auch das ist was ich suche...
und die Terme die bei dem nabla in Kugelkoordinaten mit den Winkeln kann ich vernachlässigen da ich ja sowieso keine Winkel drin hab in der Kugelwelle bzw. [mm] \varphi [/mm] und [mm] \theta [/mm] const und damit die Ableitungen =0?!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:09 Mo 11.07.2011 | Autor: | leduart |
Hallo
warum noch ne Frage, du hast es jetzt doch richtig?
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:22 Mo 11.07.2011 | Autor: | tedd |
Stimmt! Danke :)
Gruß,
tedd
|
|
|
|