matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenKugel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Kugel
Kugel < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugel: Punkte finden
Status: (Frage) beantwortet Status 
Datum: 18:23 Di 28.05.2013
Autor: SamGreen

Aufgabe
Gib vier Punkte an, die auf der Kugel mit Durchmesser AB liegen.
A (6 / 5 / 2) und B (-2 / -3 / 0)  


 


<br>

        
Bezug
Kugel: Punkte finden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:25 Di 28.05.2013
Autor: SamGreen

Vielleicht kann mir wer helfen - ich habe zwar schon die Kugelgleichung, aber wie kann ich jetzt Punkte finden?

Kugel k: (x – 2)² + (y – 1)² + (z – 1)² = 33

Bezug
        
Bezug
Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Di 28.05.2013
Autor: chrisno

Ich habe Deine Kugelgleichung nicht nachgerechnet. Du kannst selbst eine Probe durchführen:
Setze A und auch B ein.
Ganz ähnlich kommst Du an die gesuchten Punkte. Wähle jeweils einen Wert für x und y. Dazu musst Du ein bisschen nachdenken. Zum Beispiel sind Werten zwischen denen von A und B ganz geeignet. Dann musst Du die Kugelgleichung nach z auflösen und hast damit auch die dritte Koordinate.

Bezug
        
Bezug
Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Mi 29.05.2013
Autor: glie

Hallo,

die von dir angegebene Kugelgleichung ist korrekt!

Jetzt muss dir halt so eine Kugelgleichung auch etwas sagen, dann ist das auch kein Problem, Punkte zu finden die auf der Kugel liegen.

Die Kugelgleichung sagt dir halt genau die Eigenschaft, die ALLE Punkte der Kugel gemeinsam haben, nämlich:

Wenn man von der x-Koordinate 2 subtrahiert und das Ergebnis dann quadriert, dann von der y-Koordinate 1 subtrahiert und das Ergebnis wieder quadriert, dann von der z-Koordinate 1 subtrahiert und das dann wieder quadriert und die drei Quadrate dann zusammenzählt, dann kommt da immer 33 raus!

Um jetzt Punkte auf der Kugel zu finden, würde ich mir überlegen, wie man mit der Summe von drei Quadratzahlen auf 33 kommen kann.

Da fallen mir so ganz spontan 1+16+16 oder 16+16+1 oder 16+1+16 oder 25+4+4 oder 4+25+4 oder 4+4+25 ein.

Damit alleine erhältst du ja schon einige Punkte auf der Kugel. Ohne jetzt groß irgendwie rumzurechnen.

Für die erste Kombination 1+16+16 mal vorgemacht:

[mm] $\underbrace{(3-2)^2}_{1}+\underbrace{(5-1)^2}_{16}+\underbrace{(5-1)^2}_{16}=33$ [/mm]

Also liegt der Punkt $(3|5|5)$ auf der Kugel.


Gruß glie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]