matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieKruskal Beweis Minimalität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Graphentheorie" - Kruskal Beweis Minimalität
Kruskal Beweis Minimalität < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kruskal Beweis Minimalität: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:29 Mo 16.06.2014
Autor: WhiteKalia

Aufgabe
In einem zusammenhängenden gewichteten Graphen G konstruiert der Kruskal-Algorithmus einen minimalen spannenden Baum (MST).

Hallo,

das ist zwar keine Aufgabe aber der Satz um den es geht. Ich habe den Beweis dazu vollständig vor mir aber der ergibt für mich schon relativ am Anfang keinen Sinn. Vielleicht kann mir jemand helfen...

Teil 1: Z.z. MST ist ein Baum. <- Wie man das beweist ist mir klar.

Teil 2. Z.z. ist die Minimalität dieses Baums.
Und hier ist mein Problem. der Beweis beginnt da wie folgt:
Sei T Ergebnis des Algorithmus und T* minimal spannender Baum. Gilt T = T* -> fertig. Gilt T [mm] \not= [/mm] T*, dann sei e die erste (kleinste) Kante mit e [mm] \in [/mm] T und e [mm] \not\in [/mm] T*. T* [mm] \cup [/mm] {e} -> Kreis C.

-> Bitte was? Wie soll ich denn einfache die kleinste Kante aus T in irgendeinen beliebigen mini. sp. Baum T* eintragen? Man kann doch da nicht einfach nach belieben irgendwo eine Kante hinzufügen!? Oder doch? Und wenn ja wo? Da fehlt mir die Phanatsie muss ich ehrlich sagen....

Mag mich jemand erleuchten?^^

lg
Kalia

        
Bezug
Kruskal Beweis Minimalität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Mo 16.06.2014
Autor: wauwau

ein minimal spannender Baum ist eine Baum (enthält also keine Kreise) der aber alle Knoten des Graphen enthält und je zwei dieser sind mit einem Weg verbunden!
Fügst du also irgendeine noch nicht im Baum enthaltene Kante diesem Baum hinzu, dann verbindest Du also zwei Knoten, die aber schon über einen anderen Weg des Baumes miteinander verbunden sind. Daher entsteht damit ein Kreis!

Bezug
                
Bezug
Kruskal Beweis Minimalität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Mo 16.06.2014
Autor: WhiteKalia

Ja, dass ist mir klar aber meine Frage ist eher, ob ich als T* jetzt irgendeinen beliebigen minimal spannenden Baum nehmen kann?

Danke aber trotzdem schonmal. :)

Bezug
                        
Bezug
Kruskal Beweis Minimalität: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Di 17.06.2014
Autor: wauwau

Ja kannst du, denn die Idee des Beweises ist ja, dass du Kanten aus T zu [mm] $T^{*}$ [/mm] hinzufügen kannst und aus diesem dann eine Kante mit [mm] $\le$ [/mm] Gewicht entfernen kannst ohne die Minimalität zu verändern.

Bezug
                                
Bezug
Kruskal Beweis Minimalität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:23 Di 17.06.2014
Autor: WhiteKalia

Ah ok, danke dir!! :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]