matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKrümmung verknoteter Kurven
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Krümmung verknoteter Kurven
Krümmung verknoteter Kurven < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmung verknoteter Kurven: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:51 Do 30.10.2014
Autor: elmanuel

Hallo liebe Gemeinde!

Ich versuche mich gerade daran den Beweis von Fary-Milnors Satz zu verstehen...
[]Beweis-Link (bisschen nach oben scrollen)

der anfang geht ja noch: er argumentiert mit der brückenzahl dass wenn die kurve kleiner ist als 4pi dann muss es einen vektor e geben sodass die geschlossene kurve in richtung e nur ein maximum und ein minimum hat.

dann betrachtet er ebenen die zu e orthogonal sind und erkennt dass diese ebenen in den extrema einen schnittpunkt mit der spur von der kurve haben und genau 2 schnittpunkte zwischen den extrema

dann definiert er eine isotopie [mm] phi_1 [/mm] die anscheinend  "die verbindungslinien auf der e-achse zentriert" ...
hier schon mein erstes verständnisproblem: was macht diese isotopie genau?
alle verbindungslinien sind ja bereits orthogonal zum vektor e, was genau bedeutet das "zentrieren der verbindungslinien auf der e-achse? soll die e-achse die von (0,0,0) ausgehende gerade in richtung e sein?
ausserdem geht mir die abbildungsvorschrift von phi mal gar nicht ein :(

die zweite isotopie [mm] phi_3 [/mm] soll dann die kurve die möglicherweise um die e-achse verdrillt ist entdrillen... ich verstehe dass die matrix eine drehung verursacht aber was der rest der abbildung macht verstehe ich nicht

ich hab mir auch schon ein stückchen draht genommen und versucht die isotopien selbst zu vollziehen, leider hab ich scheinbar aber noch nicht begriffen was  [mm] phi_1 [/mm] und [mm] phi_3 [/mm] genau machen, deswegen ist das auch nicht geglückt...

vielleicht kann mir jemand ein bisschen auf die sprünge helfen :) ?

        
Bezug
Krümmung verknoteter Kurven: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mo 03.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]