Krit.Verstärkung/Amp.Reserve < Regelungstechnik < Ingenieurwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:18 Do 18.09.2014 | Autor: | Hing |
Aufgabe | [Dateianhang nicht öffentlich]
[mm] R(s)=\bruch{K}{s}, G(s)=\bruch{2}{10s+1}, F(s)=\bruch{1}{2s+1}
[/mm]
gesucht: Kritische Verstärkung |
Hallo, ich habe diese Aufgabe mehrmals durchgerechnet, aber irgendwas mache ich falsch. Für die Kritische Verstärkung muss die Amplitudenreserve bei -180° Phasenverschiebung bestimmt werden. Ich möchte also zuerst die Frequenz bei -180° bestimmen und mit dieser den Amplitudenwert. Ich erhalte eine Frequenz bei -180°, andererseits gibt mir Matlab eine asymptotische Näherung an 180° an. Einen Schnittpunkt mit -180° gibt es also nicht.
Mein Rechenweg:
Offener Kreis X=Z+GRW
Führungsübertragungsfkt. mit K=1: [mm] G_W=GR=\bruch{2}{s(10s+1)}=\bruch{2}{10s^2+s}=\bruch{2}{10j^2\omega^2+j\omega}=\bruch{-20\omega^2}{100\omega^4+\omega^2}-j\bruch{2\omega}{100\omega^4+\omega^2}
[/mm]
Frequenz bei Phasenverschiebung -180° bestimmen: arctan [mm] -180°=\bruch{-2\omega}{-20\omega^2}=\bruch{1}{10\omega}
[/mm]
Umgestellt nach [mm] \omega=\bruch{1}{10*arctan-180°}=-1,11*10^{-3} [/mm] (???)
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:18 Do 18.09.2014 | Autor: | Infinit |
Hallo Hing,
bei der Bestimmung der Führungsübertragungsfunktion ist Dir die Übertragungsfunktion im Rückkoppelzweig durch die Lappen gegangen.
Du benötigst
[mm] G_W(s)= R(s) \cdot G(s) \cdot F(s) [/mm]
und dann kommt Deine Rechnung.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:01 Do 18.09.2014 | Autor: | Hing |
Danke für den Hinweis, jetzt habe ich tatsächlich einen Schnittpunkt mit -180°. Aber F(s) ist mir nicht durch die Lappen gegangen. Ich dachte das Prinzip eines offenen Regelkreises bedeutet, das W=0, Z=0 und die Rückführung aufgeschnitten. Dies bedeutete für mich, das F(s) vernachlässigt werden kann.
Jedoch habe ich auch eben eine halbe Stunde in meinen Büchern und im www zum Thema rumgewühlt und nur sehr wenige unbefriedigende Antworten erhalten. Sprich: Ich bin mir immer noch nicht sicher, ob die Rückführung mit eingebunden werden darf.
|
|
|
|
|
Die Rückführung muss sogar eingebunden werden. Die Kreisverstärkung, die Du verwenden musst, ist von einem beliebigen Punkt einmal rundherum wieder dorthin zurück zu rechnen. In Deinem Fall ist die Kreisverstärkung deshalb $R(s)G(s)F(s)$.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:43 Fr 19.09.2014 | Autor: | Infinit |
Hallo Hing,
wenn Du Dir die Vorwärtsübertragungsfunktion des Regelkreises einmal per Hand ausrechnest (richtig schön mit Einsetzen) dann kommt dabei eine Übertragungsfunktion raus, in der folgende Terme auftauchen:
Fv(s) als Übertragungsfunktion im Vorwärtskreis
Fr(s) als Übertragungsfunktion in der Rückkopplung
Die Übertragungsfunktion selbst lautet
[mm] F(s) = \bruch{F_v(s)}{1+F_v(s) \cdot F_r(s)} [/mm]
Mit dem Bodediagramm und all den anderen Möglichkeiten möchtest Du ja die Punkte identifizieren, an denen diese Übertragungsfunktion instabil wird und das ist der Fall, wenn der Nenner den Wert 0 annimmt.
Etwas anders geschrieben heißt dies:
[mm] F_v(s) \cdot F_r(s) = -1 [/mm]
Und wenn Du nun die rechte Seite, also die -1, als eine Größe mit dem Betrag 1 und der Phase von 180 Grad betrachtest, dann bist Du genau bei den Überlegungen zum Bode-Diagramm.
Du siehst aber auch, dass hierbei das Produkt aus Vorwärts- und Rückwärtsübertragungsfunktion des Regelkreises auftaucht. Du kannst also nicht einfach die Rückwärtsübertragungsfunktion wegfallen lassen.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:14 Mi 24.09.2014 | Autor: | Hing |
Vielen Dank für eure Antworten, sie haben mich weitergebracht!
|
|
|
|