matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKreise, Geraden Form
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Kreise, Geraden Form
Kreise, Geraden Form < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreise, Geraden Form: Fragen
Status: (Frage) beantwortet Status 
Datum: 12:36 Sa 22.09.2007
Autor: Interpol

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich muss ein Refera zum Thema Kreise machen. Nun muss ich die Lagebeziehung zwischen Kreisen und zw. Kreisen und Geraden untersuchen.

Macht man das immer nur wenn die Kreisgleichung in Koordinatenform ist?
Ich finde nichts, wo erklärt ist, wie man eine Kreisgleichung in Voktorform in Koordinatenform umschreibt.

Und bei dem Schnitt Gerade mit Kreis steht die Gerade immer in der Form g: y= mx + c und nie mit Vektoren da.
Ich bin etwas verunsichert, da wir im Moment eigentlich noch Vektoren behandeln, aber bei dem Schnnitt Kreis - Kreis oder Gerade - Kreis wird ja nicht mit Vektoren gearbeitet.


        
Bezug
Kreise, Geraden Form: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Sa 22.09.2007
Autor: koepper

Hallo,

ein Kreis in vektorieller Form wird umgewandelt, indem du zunächst x koordinatenweise, also als [mm] $(x_1 x_2)^T$ [/mm] schreibst und dann das dortige Skalarprodukt ausrechnest. Das Quadrat an der Klammer bedeutet nämlich das Skalarprodukt mit sich selbst.

Beispiel:
Sei ein Kreis gegeben durch
[mm]\left(\overrightarrow{x} - \vektor{3 \\ 4}\right)^2 = 25[/mm]

Dann schreibst du um zu

[mm]\vektor{x_1 - 3 \\ x_2 - 4}^2 = 25[/mm]

und dann zu

[mm]\vektor{x_1 - 3 \\ x_2 - 4} \cdot \vektor{x_1 - 3 \\ x_2 - 4} = 25[/mm].

Ausrechnen bringt

[mm](x_1 - 3)^2 + (x_2 - 4)^2 = 25[/mm]

Klammern auflösen und fertig.

Eine Gerade in Normalform kannst du auf Wunsch in vektorielle Form bringen, wenn du einfach 2 verschiedene Punkte der Geraden bestimmst und dann die Parameterform aufstellst. Das kann ich aber in der Regel nicht empfehlen.
Einfacher ist es, für den Schnitt von Kreis und Gerade den Kreis in Koordinatenform zu bringen und dann die Geradengleichung für y einzusetzen.

Bezug
                
Bezug
Kreise, Geraden Form: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 Di 25.09.2007
Autor: Interpol

Vielen Dank für die schnelle Hilfe!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]