matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenKreis - Punkt außerhalb
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Kreis - Punkt außerhalb
Kreis - Punkt außerhalb < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreis - Punkt außerhalb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:42 Sa 04.11.2006
Autor: faststart

Aufgabe
Kreis r = 5LE, M (2|3). Punkt außerhalb des Kreises Q (9|2)-Schnittpunkt der beiden möglichen Tangenten. Wie lauten die Tangentengleichungen?

Hallo,
habe mir das erst einaml aufgezeichnet. Vom Prinzip her erscheint mir die Aufgabe logishc, ich weiß nur nicht so recht, wie man sie rechnerisch löst. Laut meines Lehrers soll es zwei versch. Möglichkeiten geben. Irgendwie scheint sie auch mit dem Thalessatz zu machen sein?! Denn wenn ich vom Mittelpunkt von M und Q einen Kreis ziehe, schneidet der ja die Punkte, wo die Tangenten den Kreis schneiden. Und bei P1 (obere Tangente) entsteht ein rechter Winkel (Peripheriewinkel). Leider weiß ich nicht, wie ich das rechnerisch darstellen soll.
Ich habe es erst einmal so versucht:

P [mm] [\vektor{xp \\ yp} [/mm] - [mm] \vektor{2 \\ 3}]^{2} [/mm] = [mm] 5^{2} [/mm]

[mm] \vec{MP} \circ \vec{PQ} [/mm] = 0

Q+M = [mm] \vektor{11 \\ 5}:2 [/mm] = [mm] \vektor{5,5 \\ 2,5} [/mm] (der Mittelpunkt von MQ)


und wie kann ich jetzt weiterrechnen? Bzw. gibt es noch eine andere Möglichkeit das auszurechnen?

Vielen Dank schon einmal,
faststart

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kreis - Punkt außerhalb: (Teil-)Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Sa 04.11.2006
Autor: statler

Guten Tag und [willkommenmr]

> Kreis r = 5LE, M (2|3). Punkt außerhalb des Kreises Q
> (9|2)-Schnittpunkt der beiden möglichen Tangenten. Wie
> lauten die Tangentengleichungen?
>  Hallo,
>  habe mir das erst einaml aufgezeichnet. Vom Prinzip her
> erscheint mir die Aufgabe logishc, ich weiß nur nicht so
> recht, wie man sie rechnerisch löst. Laut meines Lehrers
> soll es zwei versch. Möglichkeiten geben. Irgendwie scheint
> sie auch mit dem Thalessatz zu machen sein?! Denn wenn ich
> vom Mittelpunkt von M und Q einen Kreis ziehe, schneidet
> der ja die Punkte, wo die Tangenten den Kreis schneiden.
> Und bei P1 (obere Tangente) entsteht ein rechter Winkel
> (Peripheriewinkel). Leider weiß ich nicht, wie ich das
> rechnerisch darstellen soll.
>  Ich habe es erst einmal so versucht:
>  
> P [mm][\vektor{xp \\ yp}[/mm] - [mm]\vektor{2 \\ 3}]^{2}[/mm] = [mm]5^{2}[/mm]

Das P am Anfang verstehe ich nicht, ohne P besagt die Gleichung, daß der Punkt P auf dem Kreis liegen muß. Das ist OK.

> [mm]\vec{MP} \circ \vec{PQ}[/mm] = 0

Und diese Gleichung besagt, daß Radius und Tangente orthogonal sind, auch OK.

Jetzt hast du 2 Unbekannte (die Koordinaten von P) und 2 Gleichungen, das kann man (oft) so nach Schema F lösen, mit dem Einsetzungsverfahren z. B.

Jetzt fängt das 2. Verfahren an mit dem Thaleskr.

> Q+M = [mm]\vektor{11 \\ 5}:2[/mm] = [mm]\vektor{5,5 \\ 2,5}[/mm] (der
> Mittelpunkt von MQ)

Den Radius kannst du mit dem Pythagoras bestimmen und dann die Kreisgleichung aufstellen. Und dann mußt du noch die Schnittpunkte von Thaleskr. und Ausgangskr. bestimmen. Das ist glaubich mehr Gerechne als bei Verfahren 1.

Viel Vergnügen und einen schönen Tag noch
Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]